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Abstract

We consider systems of differential equations which model complex
regulatory networks by a graph structure of dependencies. We show
that the concepts of informative nodes (Mochizuki; see [MoSa10]) and
determining nodes (Foias and Temam; see [FoTe84]) coincide with the
notion of feedback vertex sets from graph theory.

As a result we can determine the long-time dynamics of the entire
network from observations on only a feedback vertex set. We also
indicate how open loop control at a feedback vertex set, only, forces
the remaining network to stably follow prescribed stable or unstable
trajectories.

We present three examples of biological networks which motivated
this work: a specific gene regulatory network of ascidian cell differ-
entiation [Im&al06], a signal transduction network involving the epi-
dermal growth factor in mammalian cells [Oda05], and a mammalian
gene regulatory network of circadian rhythms [Mi09]. In each ex-
ample the required observation set is much smaller than the entire
network. For further details on biological aspects see the companion
paper [Mo&al13].

The mathematical scope of our approach is not limited to biology.
Therefore we also include many further examples to illustrate and
discuss the broader mathematical aspects.

i



1 Introduction

Motivated by the dynamics of gene regulatory and signal transduction net-
works we study nonautonomous nonlinear systems of ordinary differential
equations of the form

(1.1) żk = Fk(t, zk, zIk),

k = 1, . . . , N . Here Ik ⊆ {1, . . . , N} are given subsets. For any subset
K ⊆ {1, . . . , N}, the vector

(1.2) zK := (zk)k∈K = PKz ∈ R|K|

denotes the projection PK of z = (z1, . . . , zN) ∈ RN to those components zk
with index k in the index set K. For example z{k} := zk. As an important
special case, also, we will frequently consider the autonomous variant

(1.3) żk = Fk(zk, zIk),

where the nonlinearities do not depend on time t, explicitly. We call such
ODE systems (1.1) or (1.3) regulatory networks.

We consider the ODE (1.1) as a system given on a directed graph (di-graph)
Γ with vertices {1, . . . , N}. The directed edges of Γ, from vertex i to vertex
k, are given precisely by the ordered vertex pairs (i, k) with i ∈ Ik. In other
words, the input set Ik defines the predecessors i of vertex k in the oriented
graph Γ. In view of ODE (1.1) we also call i ∈ Ik the inputs of k. We
explicitly admit the possibility of self-loops k ∈ Ik, i.e. directed edges from
k back to k itself. For a first example see the Frobenius graph of Figure 1.

Throughout the paper we fix the following assumptions. Let the nonlineari-
ties Fk and the z-Jacobians Fk,z be continuous, i.e. Fk, Fk,z ∈ C0. Moreover
let the ODE (1.1) be dissipative, i.e. assume that there exists a large positive
constant C such that for any initial condition z(0) = z0 ∈ RN of (1.1) there
exists a positive time t0 such that |z(t)| ≤ C, for all t ≥ t0. In other words,
any solution z(t) of (1.1) eventually enters a Euclidean ball around the origin,
of sufficiently large fixed radius C. In particular solutions exist globally in
forward time.
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Figure 1: A Frobenius di-graph with N vertices and 2N − 1 edges. Directed
edges run from vertex k + 1 to k = 1, . . . , N − 1 and from all vertices to N .
Note the additional self-loop at vertex N.

An explicit sufficient (but not necessary) condition for dissipativity, for ex-
ample, requires

(1.4)
N∑
k=1

zkF (t, zk, zIk) < 0

for all z ∈ RN such that |z| ≥ C.

Our final and crucial assumption is a decay condition of the form

(1.5) ∂1Fk(t, zk, zIk) < 0 ,

for all t ≥ 0, k = 1, . . . , N and bounded z ∈ RN . Here ∂1 indicates the
partial derivative with respect to the first z-argument zk of Fk.

At first sight, the decay condition (1.5) seems to require any self-feedback
from vertex k to itself to be negative. Indeed this is the case if the set Ik of
predecessors of vertex k does not contain k itself, i.e. k /∈ Ik. Equivalently,
this is the case if the graph Γ of the regulatory network is loop-free, i.e.
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Γ does not contain any vertex k with a self-loop. For example the decay
condition (1.5) is satisfied, without any self-loops, for networks of the special
form Fk(t, zk, zIk) = fk(t, zIk) − dk(t)zk, where a positive dilution or decay
rate dk is the only self-feedback of vertex k to itself; see example (8.7) below.
More general net-negative self-feedbacks are accommodated just as well, in
absence of self-loops.

Self-loops k ∈ Ik, on the other hand, entirely circumvent the decay condition
(1.5) to take any effect at all. Indeed, suppose the nonlinearity Fk does not
satisfy assumption (1.5) at all. Then, at the expense of including a self-loop

via Ĩk := Ik ∪ {k}, we may always redefine Fk to be replaced by

(1.6) F̃k(t, ζk, zeIk) := Fk(t, zk, zIk) + zk − ζk .

In other words, F̃k depends on a new artificial variable ζk, in addition to
zIk and zk in zeIk = (zIk , zk). Evaluating the network ODE (1.1) with F̃k, Ĩk
replacing Fk, Ik, of course, we have to insert ζk := zk and the ODE (1.1)
remains unchanged – albeit with arbitrary nonmonotone dependence on zk.
Therefore the unaltered ODE structure (1.1), with Ĩk instead of Ik and F̃k
instead of Fk, always satisfies assumption (1.5) even if Fk itself did not.
Summarizing self-loops in the regulatory network graph Γ may indicate a
net-positive self-feedback, and should be used in such cases, only.

To study the large time asymptotics of ODE systems

(1.7) ż = F (t, z) ,

z ∈ RN via information zI(t) on a potentially very small subset I ⊆ {1, . . . , N}
we introduce the concept of determining nodes. This concept was first con-
sidered by Foias and Temam in the technically demanding PDE context of
the Navier-Stokes equations for fluid flows; see [FoTe84]. Their emphasis was
on a reduction of the asymptotic dynamics from infinite to finite dimensional
observations, essentially via spectral gap properties of the linear Stokes oper-
ator. Our emphasis here is on a reduction from large networks to potentially
very few observations, via graph theoretic properties of the network.

Definition 1.1. We call a subset I of the vertex set {1, . . . , N} a set of
determining nodes, if

(1.8) z̃(t)− z(t) −→
t→+∞

0
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holds, for any two solutions z(t), z̃(t) of the nonautonomous ODE system
(1.7) such that

(1.9) z̃I(t)− zI(t) −→
t→+∞

0 .

In suitable coordinates we may replace the coordinate projection PI involved
in (1.8), (1.9) by any other projection, of course. In the more specific context
of regulatory networks (1.1) on a di-graph Γ, however, we may interpret the
determining nodes I as vertices directly and conclude that observations of
the determining nodes (1.9) alone are sufficient to determine the large time
dynamics (1.8) of the entire network. It is therefore an important task to
identify determining node sets I which are, both, as small and as experimen-
tally accessible as possible. We will show below how to identify determining
node sets I based on the structure of the di-graph Γ, only.

A di-cycle (directed cycle) in a di-graph Γ is an alternating sequence of
vertices and edges, traversed in the prescribed orientation, such that the first
and last vertex coincide. Self-loops are explicitly allowed. A di-graph Γ
without di-cycles is called acyclic.

Definition 1.2. A feedback vertex set of a di-graph Γ is a possibly empty
subset I of vertices such that the di-graph ΓrI is acyclic. Here ΓrI denotes
the resulting di-graph when all vertices of I are removed from Γ, along with
all edges from or towards those vertices.

As a trivial example note that a di-graph is acyclic if and only if it possesses
an empty feedback vertex set. As a second example consider the Frobenius
di-graph Γ of Figure 1. Since the vertex k = N possesses a self-loop, any
feedback vertex set I must contain N . Conversely, I = {N} is a feedback
vertex set. Indeed the remaining di-graph Γr{N} is given by the acyclic
linear chain N−1→ . . .→ 2→ 1. Therefore I = {N} is the unique minimal
feedback vertex set of Γ. In general, however, minimal feedback vertex sets
need not be unique. A simple example is the graph of two vertices 1,2 with
directed edges from 1 to 2 and from 2 to 1; see also section 5.3.

The problem of finding a minimal feedback vertex set for di-graphs is known
to be NP-complete [Ka75]. Moderately cumbersome as the the task to find
a minimal feedback vertex set may be, however, it is equivalent to finding a
smallest possible set of determining nodes which work for all nonlinearities of
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the regulatory network (1.1). This is our first main result, proved in sections
3 and 6 below.

Theorem 1.3. Consider a nonautonomous regulatory ODE network (1.1)
with dissipative nonlinearities Fk, and associated di-graph Γ. We also assume
Fk, DzFk to be continuous. Moreover Fk satisfies the uniform decay condition
(1.5).

Then a possibly empty subset I ⊆ {1, . . . , N} of vertices of Γ is a set of deter-
mining nodes for the dynamics of (1.1) and for all choices of nonlinearities
Fk if and only if I is a feedback vertex set of the di-graph Γ.

Our second main result shows how the dynamics zI(t) on a feedback vertex set
I faithfully represents the full dynamics of any uniformly bounded solution
z(t), for all t ∈ R, i.e. for all forward and backward time. In particular
this includes all steady states, periodic and quasiperiodic solutions and all
bounded chaotic trajectories. For simplicity of presentation we restrict to
autonomous ODEs, i.e. to regulatory networks

(1.10) ż = F (z)

with nonlinearities Fk(t, zk, zIk) = Fk(zk, zIk) which do not depend on time t
explicitly. The appropriate concept here is the global attractor.

Definition 1.4. Assume an autonomous ODE (1.10) to be dissipative, e.g.
because the C1-nonlinearity F = (F1, . . . , FN) satisfies condition (1.4). Then
the set

(1.11) A := {z(0) ∈ RN | sup
t∈R
|z(t)| <∞}

of initial conditions of uniformly bounded solutions z(t) is called the global
attractor of (1.6).

Again, global attractors are a PDE concept first studied in the context of
two-dimensional Navier-Stokes fluid flows [La72]. Meanwhile this concept
has attracted a lot of attention; see for example the monographs [Ha88,
Te88, La91, BaVi92, Ed&al94, ChVi02, Ha&al02, Ra02, SeYo02] and the
references there. For our purposes we briefly recall these results, adapted to
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our ODE context and justify the name of “global attractor”. We begin with
the concept of the ω-limit set

(1.12) ω(z(0)) := {z∞ ∈ RN
∣∣ z∞ = lim z(tn), for some tn →∞}

of an initial datum z(0). Similarly, we can define the ω-limit set of any subset
B ⊆ RN via sequences of initial data zn(0) ∈ B as

(1.13) ω(B) := {z∞ ∈ RN |z∞ = lim zn(tn), for tn →∞, zn(0) ∈ B} .

We say that a set A attracts a set B, if ω(B) ⊆ A. We say that a set A is
invariant if z(0) ∈ A implies z(t) ∈ A, for all positive and negative t ∈ R. By
construction, for example, the above ω-limit sets are invariant. The following
characterization of global attractors can be found in [Ha88], for example.

Proposition 1.5. Assume the autonomous ODE (1.10) is dissipative. Then
the global attractor A ⊆ RN of definition 1.4 has the following properties:

(i) A is nonempty, compact and invariant;

(ii) A is the smallest set which attracts all bounded sets;

(iii) A is the largest set which is, both, compact and invariant.

Since we are in RN , here, compactness of A is equivalent to A being bounded
and closed.

We can now formulate our second main result which shows that observations
of history time tracks zI(t) at the determining nodes alone suffice to deter-
mine and reconstruct the full dynamics on the global attractor. Let R− de-
note the set of nonpositive real numbers t ≤ 0. Let BC2 denote the bounded
functions t 7→ z(t), t ∈ R−, with uniformly bounded first and second deriva-
tives, endowed with the compact-open topology of uniform C2-convergence
on bounded subsets of t ∈ R−.

Theorem 1.6. Consider an autonomous regulatory ODE network (1.3) with
dissipative C1-nonlinearities Fk, decay condition (1.4), associated di-graph
Γ, feedback vertex set I, and global attractor A.

Then the continuous projection

PI : A → BC2(R−,R|I|)(1.14)

z(0) 7→ zI(·)

is injective, i.e. one-to-one.
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In other words, there is a unique inverse

(1.15) P−1
I : BC2(R−,R|I|) ⊇ Range PI −→ A

which reconstructs the full initial condition

(1.16) P−1
I zI(·) = z(0) ∈ A

from any history time track t 7→ zI(t), t ∈ R−, on the feedback vertex set I. A
fortiori, this determines any trajectory t 7→ z(t), t ∈ R in the global attractor
A uniquely, from any given history time track zI(t), t ∈ R−, restricted to
the feedback vertex set I and to the history t ≤ 0 of the initial datum z(0)
under consideration.

As formulated, theorem 1.6 seems to refer to the history time tracks t 7→ z(t),
t ∈ R−, on the global attractor A, rather than experimentally available for-
ward time tracks for t > 0. The global attractor A itself, however, is con-
structed as a limit ω(B) in forward time tn →∞. Therefore the history time
tracks on the global attractorA can be thought of as being well approximated
by measurements of forward time tracks, in any experimental setting.

For the proper interpretation of theorem 1.6 for acyclic regulatory networks
Γ, i.e. for the case of empty feedback vertex sets I, see example 5.1 below.

The remaining sections are organized as follows. In section 2 we show that
the notion of a feedback vertex set coincides with the notion of a set of
informative nodes as introduced by Mochizuki and Saito in [MoSa10]; see
corollary 2.4. Based on this equivalence we can pass from the feedback ver-
tices to determining nodes, in section 3, and prove the if-part of feedback
vertex theorem 1.3 on their equivalence.

Section 4 is devoted to the proof of theorem 1.6 on the unique reconstruction
of global attractors from the history time tracks on the feedback vertex set.
As a corollary we recover the results on steady states of [Mo08, MoSa10] in
corollary 4.1. We illustrate both results with some mathematical examples,
in section 5. In particular we discuss the Frobenius di-graph of Figure 1 with
linear flow in some detail. Based on such examples we prove the converse
only-if-part of feedback vertex theorem 1.3 in section 6. Three biological

7



examples are addressed in section 7. See also the companion paper [Mo&al13]
for a more thorough presentation of biological aspects. We conclude in section
8 with a discussion of our results – and a string of caveats.

Acknowledgement. The first two authors gratefully acknowledge pleas-
ant excesses of mutual hospitality during very enjoyable working visits. We
are also indebted to Sze-Bi Hsu and NCTS Taiwan for generous hospitality
and helpful comments. The relation with determining nodes was suggested
by Abderrahim Azouani. Hiroshi Kokubu, Hiroe Oka, Genevieve Raugel
and her insightful referee have greatly assisted with valuable further sug-
gestions. Skillful and very patient typesetting was gracefully achieved by
Margrit Barrett and Ulrike Geiger. This work was generously supported by
the Deutsche Forschungsgemeinschaft, SFB 910 “Control of Self-Organizing
Nonlinear Systems”.

2 Feedback vertices, infomative nodes, and

labeling order

In this section we study the di-graph Γ associated with the regulatory network
(1.1). In definition 1.2 we have introduced feedback vertex sets I of Γ: upon
removal of I the remaining di-graph ΓrI becomes acyclic. In definition 2.1
below we introduce informative sets, as developed by Mochizuki and Saito in
their study [MoSa10] of steady states of gene regulatory networks. Lemma
2.2 provides a convenient labeling order of the vertices 1, . . . , N of regulatory
networks (1.1) with informative set I. Our proofs of theorems 1.3 and 1.6
will be based on this labeling order. As an immediate consequence we obtain
the equivalence of the notions of feedback vertex sets and informative sets,
in Corollary 2.4.

Definition 2.1.

(i) A possibly empty subset I ⊆ {1, . . . , N} of the vertex set of a di-graph
Γ is called informative, if for any nonzero ζ ∈ RN with ζI = 0 there
exists a vertex n such that ζn 6= 0 but ζIn = 0.

(ii) Equivalently, for any distinct z, z̃ ∈ RN which coincide on I there exists
a vertex n such that z, z̃ coincide on the predecessors In of n, but z̃n 6=
zn.
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The equivalence claim of definition 2.1 is obvious. We write ζ := z̃ − z to
prove (i) implies (ii). We choose z := 0, z̃ := ζ for the reverse direction. The
steady state analysis of regulatory networks (1.1) in [MoSa10] was based on
the second variant.

Lemma 2.2. Let ∅ ⊆ I ⊆ {1, . . . , N} be informative for the di-graph Γ. We
label I = {N ′ + 1, . . . , N} with N ′ := N − |I| in case I is nonempty.

Then there exists an ordered labeling of the vertices J := {1, . . . , N ′} of the
remaining di-graph ΓrI, upon removal of I, such that

(2.1) In′ ⊆ I ∪ {1, . . . , n′ − 1}

holds for all predecessor sets In′ of the remaining vertices n′ ∈ J .

Conversely, I = {N ′ + 1, . . . , N} is informative for Γ if (2.1) holds for all
1 ≤ n′ ≤ N ′.

Proof.
We characterize the informative set I by definition 2.1(i). We skip the trivial
case |I| = N , N ′ = 0 and proceed by induction over n′ ≥ 1.

For n′ = 1 we choose ζ := 1J 6= 0 to vanish on I and have components ζj = 1
for all j ∈ J = {1, . . . , N ′}. Because I is informative there exists n with
ζIn = 0 and ζn 6= 0. By construction In ⊆ I and n ∈ J . Relabeling this n as
1 shows (2.1) for n′ = 1.

To show the induction step suppose we have shown claim (2.1) up to but
not including some 1 < n′ ≤ N ′. To show (2.1) for n′ we choose ζ :=
1{n′,...,N ′} to be the nonzero indicator of the remaining vertices n′, . . . , N ′ in
J . Again because I is informative, there exists n with ζIn = 0 and ζn 6= 0.
By construction In ⊆ I ∪ {1, . . . , n′ − 1} and n′ ≤ n ≤ N ′. Relabeling this n
as n′ shows (2.1). This completes the induction.

Conversely suppose (2.1) holds. To show I = {N ′ + 1, . . . , N} is informative
let ζ 6= 0 vanish on I. Choose 1 ≤ n ≤ N ′ minimal such that ζn 6= 0.
Then ζI∪{1,...,n−1} = 0 by definition of n. But (2.1) with n′ := n implies
In ⊆ I ∪ {1, . . . , n − 1}. Therefore ζIn = 0, and the converse claim is also
proved. �

See Figure 2 for an illustration of lemma 2.2 with informative set I = {N}.
By comparison with the Frobenius graph of Figure 1 note the reversed or-
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Figure 2: The maximal di-graph Γ with informative set I = {N}. Predeces-
sor sets In′ are I ∪ {1, . . . , n′ − 1} for 1 ≤ n′ ≤ N ′ = N − 1, i.e. for n′ 6∈ I.
The predecessor set IN of the single informative node N is all of {1, . . . , N}.
In other words, the oriented edge i → j exists unless 1 ≤ j ≤ i ≤ N − 1.
Some of the indicated edges may be absent in other di-graphs Γ with a single
informative node.
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dering of the complementary vertices 1, . . . , N − 1 and the omitted arrows
there.
Labeling orders are not unique, in general. Reverting some, but not all,
arrows in the vertical chain N − 1→ . . .→ 2→ 1 of Figure 1, for example,
offers several choices of top vertices n′ = 1 without predecessors.

To prove equivalence of informative sets and feedback vertex sets we show
next that feedback vertex sets I are characterized by the same labeling order
(2.1) as informative sets are.

Lemma 2.3. A possibly empty subset I ⊆ {1, . . . , N} of the vertex set of
a di-graph Γ is a feedback vertex set if, and only if, the vertices n′ ∈ J :=
{1, . . . , N ′} of the remaining di-graph ΓrI possess an ordered labeling such
that (2.1) holds.

Proof.
By definition 1.2 the set I is a feedback vertex set if and only if ΓrI is acyclic.
Acyclicity, in turn, is equivalent to the edge orientation of ΓrI defining a
strict partial order ≺ on the vertices J . Here we define j1 ≺ j2 on J , if
j1 6= j2 and there exists an oriented path in ΓrI from j1 to j2.

Since J is finite, we can extend the strict partial order ≺ to a strict total
order on J . Labeling the vertices of J in ascending strict total order proves
(2.1), for any feedback vertex set I.

Conversely, (2.1) defines a strict total order on J . In particular ΓrI is acyclic
and I is a feedback vertex set. This proves the lemma. �

Corollary 2.4. A possibly empty subset I ⊆ {1, . . . , N} of the vertex set of
a di-graph Γ is a feedback vertex set if, and only if, it is informative.

Proof.
By lemmas 2.2 and 2.3 the informative and the feedback vertex property of
I are each equivalent to the labeling order (2.1) on ΓrI. �

As a curiosity we observe invariance of the feedback vertex sets under orien-
tation reversal. Indeed let Γ denote the di-graph Γ with reversed orientation
of all edges. This preserves all cycles, albeit with reversed orientation, and
therefore preserves any feedback vertex sets. Invariance of informative sets
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ensues by lemma 2.3. This informative invariance is less intuitive because
the dependence hierarchy of predecessor −→ successor is reversed in Γ.

3 From feedback vertices to determining nodes

In this section we prove the if-part of theorem 1.3 on determining nodes of
nonautonomous regulatory networks, as formulated in lemma 3.2 below. For
preparation we study the linear variant of the gene regulatory network (1.1)
in lemma 3.1.

To be specific consider the linear nonautonomous regulatory network

(3.1) ẇk(t) = −ak(t)wk + bTk (t)wIk(t)

on the di-graph Γ with continuous nonautonomous coefficients ak(t) ∈ R,
bk(t) ∈ R|Ik|. We also assume uniform bounds

(3.2) 0 < a0 ≤ ak(t); |bk(t)| ≤ b0

for all 1 ≤ k ≤ N and all t ≥ 0.

Lemma 3.1. Let (3.1), (3.2) hold and let I be a feedback vertex set of the
di-graph Γ. Assume convergence

(3.3) wI(t) −→ 0,

for t→ +∞, i.e. wk(t) −→ 0, for all k ∈ I.

Then we also have convergence

(3.4) wJ(t) −→ 0,

for t→ +∞, i.e. wk(t) −→ 0 for all k in the complementary set J of vertices
in the remaining di-graph ΓrI.

In short, wI(t) −→ 0 implies w(t) −→ 0.

Proof.
Following lemmas 3.2 and 3.3 we relabel the vertices of Γ such that J =
{1, . . . , N ′}, I = {N ′ + 1, . . . , N} and

(3.5) In′ ⊆ I ∪ {1, . . . , n′ − 1}
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by labeling order (2.1). We prove decay (3.4) by induction over k.

Suppose claim (3.4) has been proved for all k ∈ {1, . . . , n′ − 1}. To show
(3.4) for k = n′ we use variations-of-constants in ODE (3.1) together with
estimates (3.2) and the induction hypothesis on (3.4) to estimate

|wn′(t)| ≤

(
exp

(
−
∫ t

0

an(s)ds

)
|wn′(0)|+

+
∑
j∈In′

∫ t

0

exp

(
−
∫ t

s

an′(σ)dσ

)
· |bj(s)| · |wj(s)|ds

)
(3.6)

≤

(
e−a0t|wn′(0)|+

∑
j∈In′

∫ t

0

exp (−a0(t− s)) b0|wj(s)|ds

)
→ 0

for t → +∞. Indeed convergence is exponential in the first term. The
integral terms equal

(3.7) b0

∫ t

0

e−a0s|wj(t− s)|ds.

Note convergence wj(σ)→ 0 for σ → +∞ and all j ∈ In′ ⊆ I∪{1, . . . , n′−1}.
For j ∈ I this holds by assumption (3.3). For the complementary vertices j ∈
{1, . . . , n′−1}rI this holds by induction hypothesis. Since the integrals (3.7)
converge by Lebesgue dominated convergence, for the uniformly bounded
shifts of wj, this implies

(3.8) lim
t→+∞

∫ t

0

e−a0s|wj(t− s)|ds = 0.

Since {1, . . . , n′− 1}rI = ∅ for k = n′ = 1, this completes the induction for
(3.4), and proves the lemma. �

Lemma 3.2. Let I be a feedback vertex set of the di-graph Γ of a dissipative
nonautonomous regulatory ODE network (1.1). Assume continuity of the
nonlinearities Fk, ∂zFk, bounded uniformly for t ≥ 0 and bounded |z|, and
assume the decay condition (1.5).

Then I is a set of determining nodes of (1.1).
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Proof.
Let w(t) := z̃(t)− z(t) for any two solutions z(t), z̃(t) of the nonautonomous
ODE network (1.1) such that wI(t) → 0 for t → +∞. We have to show
w(t)→ 0 on all vertices.

We abbreviate (1.1) as ż = F (t, z(t)) and observe that the difference w(t)
satisfies the linear nonautonomous ODE

(3.9) ẇ(t) = A(t)w(t)

where we define

(3.10) A(t) :=

∫ 1

0

∂zF (t, z(t) + ϑw(t))dϑ.

Even though this definition of A(t) clearly involves both nonlinear ODE
solutions z(t), z̃(t), we can safely use the fact that w(t) := z̃(t) − z(t) is
a particular solution of the linear ODE (3.9). In fact we can rewrite (3.9)
in the linear nonautonomous regulatory network form (3.1). Dissipativity
of F implies uniform boundedness of z(t), z̃(t), and of z(t) + ϑw(t), for all
t ≥ 0. This implies uniform boundedness of |b(t)|. Decay condition (1.4) on
F implies the uniform lower bound (3.2) required in lemma 3.1. Invoking
lemma 3.1 for the particular solution w(t) = z̃(t)− z(t) completes the proof.

�

4 Global attractors

In this section we prove the reconstruction theorem 1.6 on determinacy of
global attractors A by the history time tracks zI(t) on the informative set
I, alias the feedback vertex set, of the autonomous regulatory network (1.3).
As in theorem 1.6, we assume dissipative C1-nonlinearities Fk with decay
condition (1.5) throughout the present section.

Proof of theorem 1.6.
Let z(t), z̃(t) denote two solutions in the global attractor A, for all nonpos-
itive real times t ∈ R−. Note that z, z̃ are globally bounded; see definition
1.4. We assume the C2 history time tracks

(4.1) z̃I(t) = zI(t)
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coincide, for all t ∈ R−, and we will show

(4.2) z̃(τ) = z(τ),

for all τ ∈ R−. In particular this will show z̃(0) = z(0), proving injectivity
of the informative projection PI as claimed in (1.14).

Our proof of claim (4.2) proceeds along the lines of the proof of lemmas 3.1
and 3.2. We first define w(t) := z̃(t) − z(t). Because z, z̃ are in the global
attractor A, they are uniformly bounded in C2 – as is their difference w. We
rewrite the resulting nonautonomous linear system (3.9), (3.10) for w as a
nonautonomous linear regulatory network (3.1). The coefficients ak(t), b

T
k (t)

are uniformly bounded, because F ∈ C1 and z, z̃ ∈ A are uniformly bounded.
Similarly we obtain uniform decay an(t) ≥ a0 > 0 as required in (3.2).

We now proceed inductively, pretty much as in (3.6) – (3.8). The only mod-
ification will be that we shift the initial condition wn′(t0) for the variations-
of-constants formula of

(4.3) ẇk(t) = −ak(t)wk(t) + bTk (t)wIk(t)

from t0 = 0 to t0 = −∞. Specifically we have

wk(t) = exp

(
−
∫ t

t0

ak(s)ds

)
wk(t0)+

(4.4)

+

∫ t

t0

exp

(
−
∫ t

s

ak(σ)dσ

)
bTk (s)wIk(s)ds

with ak(s) ≥ a0 > 0 and uniformly bounded bk(s), wk(s). Therefore we
may pass to the limit t0 → −∞ in (4.4), for any fixed t ∈ R−. Since the
first exponential in (4.4) converges to zero we obtain the convergent integral
representation

(4.5) wk(t) =

∫ t

−∞
exp

(
−
∫ t

s

ak(σ)dσ

)
bk(s)wIk(s)ds.

By labeling order (2.1), this becomes a recursion for n′ = k = 1, . . . , N ′

outside the feedback vertex set I. By assumption we have

(4.6) wI(t) = z̃I(t)− zI(t) ≡ 0
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on I itself. Therefore, induction over n′ = k proves z̃(t) − z(t) = w(t) = 0
for all t ∈ R−. This proves theorem 1.6. �

As a corollary to theorem 1.6 we recover the result of [MoSa10] on stationary
solutions of autonomous regulatory networks (1.1), (1.10).

Corollary 4.1. [MoSa10] Let I be an informative set of the di-graph Γ of a
dissipative autonomous regulatory ODE network (1.3) with decay condition
(1.4). Let z and z̃ be stationary solutions, i.e. F (z) = F (z̃) = 0, which
coincide on the informative set, i.e. z̃I = zI .

Then z and z̃ are identical, z̃ = z.

Proof.
By corollary 2.4 the informative set I is a feedback vertex set. By definition
1.4 stationary solutions z, z̃ belong to the global attractor A. By theorem
1.6 the assumption z̃I = zI an the feedback vertex set I implies z̃ = z are
identical, as claimed. �

5 Mathematical examples

So far, we have proved theorem 1.6 on the reconstruction of global attractors,
and the if-part of theorem 1.3 on the determing property of feedback vertex
sets. We now illustrate these results by five mathematical examples of specific
autonomous regulatory networks

(5.1) żk = Fk(zk, zIk) .

Unless stated otherwise, nonlinearities are C1, dissipative, and satisfy the
decay condition (1.4), i.e.

(5.2) ∂1Fk(zk, zIn) < 0

for all k, uniformly for bounded |z|. We begin with acyclic di-graphs Γ, in
example 5.1. Examples 5.2 and 5.3 examine the case of a single self-loop Γ
and a loop Γ of length two, respectively. As a three-dimensional example we
discuss feedback vertices I of the celebrated Lorenz equations in example 5.4.
Example 5.5 returns to the linear autonomous version of the Frobenius graph
of Figure 1.1 which features a one-point feedback vertex set I. All examples
except 5.4 will also be used in the proof of the only-if-part of theorem 1.3.

16



5.1 Example: acyclic regulatory networks

Acyclic regulatory networks (5.1) allow for an empty feedback vertex set,
I = ∅, by definition. The if-part of feedback vertex theorem 1.3, as proved
in section 3, then asserts that the empty set I is determining for the dynamics
of (5.1). In view of definition 1.1 this means that

(5.3) z̃(t)− z(t) −→
t→+∞

0 ,

for any two solution z, z̃. By degree theory the global attractor A of (5.1)
contains a stationary solution z(t) ≡ z, see for example [Ha88]. By (5.3),
this stationary solution is unique and globally attracting. In particular the
global attractorA is just that globally asymptotically stable stationary point,
A = {z}. This is also the appropriate interpretation of the attractor recon-
struction theorem 1.6 for I = ∅.

5.2 Example: the single self-loop

Autonomous regulatory networks (5.1) for which the di-graph Γ consists of
a single self-loop Γ can be written as a single scalar ODE

(5.4) ż1 = F (z1) ,

z1 ∈ R. The decay condition (1.5) is void, due to the self-loop. Dissipativity
is equivalent to

(5.5) F (z)z < 0

for |z| ≥ C large enough. Obviously I = {1} is the only feedback vertex set.
See Figure 3(a). The global attractor A is the closed interval with endpoints
given by the minimal and maximal zero of F . Explicit examples are provided
by polynomials

(5.6) F (z) = −z2n+1 + . . .+ c0

of odd degree. In particular any number of coexisting equilibia may arise in
non-monotone regulatory networks with a single feedback vertex.

The assertion of the if-part of feedback vertex theorem 1.3 becomes void
because the only possible feedback vertex set I = {1} already consists of all
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(b)

z1 z2z1

(a)

Figure 3: Di-graphs Γ of a single self-loop (a), and a single cycle of length 2,
(b).

vertices of Γ. The assertion of the attractor reconstruction theorem 1.6 is
likewise trivial because the correspondence between initial conditions z1(0)
and history time tracks z1(t) is unique.

Note however how the above example proves the converse only-if-part of
feedback vertex theorem 1.3 for the single self-loop γ. Indeed I = ∅, the only
other option for a set of determining nodes, fails by example 5.1 whenever
the nonlinearity F (z) possesses more than a single real zero.

5.3 Example: single loops of length two

For single loop di-graphs Γ of two vertices, the autonomous regulatory net-
work (5.1) reads

ż1 = G1(z1, z2)
(5.7)

ż2 = G2(z1, z2)

with decay condition (1.5) in the form

(5.8) ∂1G1 < 0, ∂2G2 < 0 .

Obviously I = {1} or I = {2} can equally serve as a non-unique minimal
feedback vertex set. See Figure 3(b). For genericity we assume equilibria of
(5.7) to be hyperbolic.

The dynamics of (5.7) is gradient-like. Indeed decay condition (5.8) asserts
negative divergence of (5.7) and hence precludes periodic and homoclinic or-
bits as well as any heteroclinic loops. Theorem 1.6 and the if-part of theorem
1.3 assert how monitoring the history time track of any single component of
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z1 z2

z3

Figure 4: The di-graph Γ of the Lorenz system (5.10), viewed as a regulatory
network.

z = (z1, z2) is sufficient to determine trajectories in the global attractor A,
or the asymptotic dynamics of any trajectory.

To address the only-if-part of feedback vertex theorem 1.3 we observe that,
again, the only other option I = ∅ fails to be determining. Indeed example
5.1 would then require stationary solutions to be unique. An easy dissipative
example (5.7) with multiple stationary solutions, however, is given explicitly
by

ż1 = az2 − z1

(5.9)
ż2 = sin z1 − z2

with a > 1.

5.4 Example: the Lorenz attractor

The celebrated Lorenz equations are

(5.10)
ż1 = σz2 − σz1

ż2 = ρz1 − z1z3 − z2

ż3 = z1z2 − βz3

with positive parameters σ, ρ, β; [Lo63]. See Figure 4 for the associated
di-graph Γ which casts the Lorenz system into the form of an autonomous
regulatory network. Clearly I = {2} is a minimal feedback vertex set of Γ.

The literature on the dynamics of the Lorenz system abounds. See [Sp82] for
an early survey. Dissipativeness of the Lorenz system is known. Chaoticity
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has been proved for suitable parameters; see [Mi&al01, Tu02] and the earlier
references there. In addition a plethora of bifurcations attest to multiple
stationary solutions, homoclinicity, period doubling cascades, and so on.

Again attractor reconstruction theorem 1.6 asserts that all the fairly compli-
cated dynamics of the whole Lorenz system can be faithfully represented by
only monitoring the history time track z2(t), t ∈ R−. The if-part of feedback
vertex theorem 1.3 makes a similar assertion for the large time asymptotics
of any Lorenz trajectory z(t), t ≥ 0, not necessarily restricted to the Lorenz
attractor itself.

Our approach applies, as well, to many other chaotic systems of related
structure. For example we mention the chaotic Chen system of which global
boundedness has recently been proved in [BaCh11].

5.5 Example: Frobenius matrices

We consider the Frobenius di-graph Γ of Figure 1 with autonomous linear
Fk(zk, zIk). More specifically we consider the system

(5.11)

ż1 = z2 − a0z1

ż2 = z3 − a0z2
...

...
...

żN−1 = zN − a0zN−1

żN = −c0z1 − . . .− cN−1zN − a0zN

In the linear setting (3.1) this corresponds to the choices ak(t) = −1 < 0,
Ik = {k + 1}, bk(t) = +1, except for IN = {1, . . . , N} and bNj = −cj−1. In
short,

(5.12) ż = Cz − z

if we choose a0 = 1. Here C is a Frobenus matrix with characteristic poly-
nomial

(5.13) pC(λ) = λN + cN−1λ
N−1 + . . .+ c0 .

This is obvious because ż = Cz is equivalent to theN -th order scalar equation
z

(N)
1 + . . .+ c0z1 = 0. As we have already observed in section 1 the minimal
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feedback vertex set I of Γ is I = {N}.

The spectrum Λ := {λ1, . . . , λN} of C− id in (5.12) can be chosen arbitrarily
via the shifted zero set (5.14) of the characteristic polynomial pC(λ+ 1) = 0
and the resulting coefficients c0, . . . , cN−1. Decay condition (1.5) holds by
construction. If desired, dissipativity can be enforced, e.g., by a nonlinear
modification

(5.14) a0 = a0(z) = 1 + χ(z2)

where the smooth real function χ is zero, say for z2 ≤ 1, and z2 for large
arguments z2.

We now interpret the results of the if-part of feedback vertex theorem 1.3
and of reconstruction theorem 1.6 for the purely linear system (5.12). For
simplicity we only consider simple eigenvalues λj and avoid growing solutions
by the assumption Re Λ ≤ 0. Decaying eigenvalues Re λj < 0 neither
contribute to the solution differences of theorem 1.3, asymptotically, nor to
the linear analogue of the global attractor A, namely the set of solutions z(t)
which are bounded for all positive and negative real times t. Therefore, we
only discuss the purely imaginary part Re λk = 0 of the spectrum Λ.

Suppose λk = 0 is a simple eigenvalue of C − id. The associated eigenvector
z 6= 0, which defines a line of stationary solutions of (5.12), possesses a
component zN 6= 0 at the determining feedback vertex set I = {N}. The
component zN therefore allows us to monitor the stationary solutions.

Similarly the eigenvector zj 6= 0 of any nonzero purely imaginary eigenvalue
λj = iωj possesses nonzero feedback vertex component zjN . Indeed

(5.15) iωjz
j
k = żk = zjk+1 − z

j
k ,

for k = 1, . . . , N −1 would likewise force all components zjk to vanish, in case
zjN = 0. This allows us to detect a single pair of simple eigenvalues ±iωj on
the imaginary axis, via the determining history time track zN(t).

More importantly, theorems 1.3 and 1.6 assert, for any simple pure imaginary
spectrum, that the time track zN(t) also allows us to track the full dynamics
of (5.12). Tracking works at least asymptotically for t → +∞, in presence
of other decaying eigenvalues Re λk < 0. In absence of decaying components
we are on the linear analogue of the global attractor A and can faithfully
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reconstruct the full dynamics z(t) from only the history time track zN(t), t ≤
0.

For example let all eigenvalues be simple purely imaginary pairs ±iωj with
distinct ωj > 0. Then any solution z(t) of (5.12) is quasiperiodic and can be
written as

(5.16) z(t) =
∑
j

αje
iωjtzj ,

in abbreviating complex notation. In particular

(5.17) zN(t) =
∑
j

αje
iωjtzjN

with zjN 6= 0 for all j. Via the Fourier averages

(MzN)(ω) := lim
T→−∞

1

T

∫ T

0

zN(t)e−iωtdt =

(5.18)

=

{
αjz

j
N for ω = ωj ,

0 otherwise

of the determining feedback vertex history time track zN(t) we can recover
the complete set of time periodic spectral components ±iωj which contribute
to the full quasiperiodic solution z(t) via αj 6= 0. This follows from recon-
struction theorem 1.6 or, quite explicitly in this easy linear case, because
zjN 6= 0 for all j.

6 From determining nodes to feedback ver-

tices

In this section we prove the only-if-part of feedback vertex theorem 1.3 on
determining nodes of nonautonomous regulatory networks, as formulated
in lemma 6.1 below. Our proof proceeds by the contrapositive: assuming
I ⊆ {1, . . . , N} is not a feedback vertex set of the di-graph γ, we construct
nonlinearities Fk such that I is not a set of determining nodes. Our con-
structions of Fk will be based on the examples discussed in section 5. All
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constructions will feature multiple stationary or periodic solutions z(t) of
autonomous regulatory networks (1.3) which become indistinguishable when
restricted to I. Where we refer to the linear Frobenius example 5.5, the
dissipative modification (5.14) will tacitly be assumed.

Lemma 6.1. Consider autonomous regulatory ODE networks (1.3) with as-
sociated di-graph Γ. Assume I ⊆ {1, . . . , N} is not a feedback vertex set of
Γ.

Then there exist smooth dissipative nonlinearities Fk with decay property
(1.5) such that I is not a set of determining nodes for the dynamics of (1.3).

Proof.
Because I is not a feedback vertex set, definition 1.2 implies that the remain-
ing graph ΓrI possesses a cycle, say 1 → m → m − 1 → . . . → 1. Outside
the cycle vertices M = {1, . . . ,m} we simply choose uniform decay

(6.1) Fk(zk, zIk) := −zk .

In particular this ensures global asymptotic stability zk(t)→ 0 for all k 6∈M ,
and hence for all k ∈ I ⊆ ΓrM . The dynamics on M is therefore invisible
on I. On the cycle M itself we choose

(6.2) Fk(zk, zIk) = Fk(zk, zk+1)

for indices in M mod m. In particular Ik = {k + 1} mod m.

Our construction of Fk now reduces to the case where the remaining graph
Γ̃ := ΓrI is a single cycle with vertices M . The dynamics on M is invisible
to I. Hence it is sufficient to construct smooth dissipative nonlinearities Fk
on M with decay property (1.5) such that multiple stationary or periodic
solutions arise. We treat the cases m = 1, 2, and m ≥ 3 separately.

For m = 1 the cycle graph on M = {1} is a single self-loop as discussed in
example 5.2. Since multiple stationary solutions can arise in that example,
the set I is not a set of determining nodes.

Analogously, example 5.3 of a single loop with two vertices settles the case
m = 2.

The linear Frobenius example 5.5 suggests an alternative way, albeit less
generic, to settle the case of arbitrary cycles M = {1, . . . ,m}. Ignoring
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dissipativity, which was already settled in (5.14), we choose

(6.3) Fk(zk, zk+1) := zk+1 − zk
for any fixed m ≥ 1 and indices mod m. By (5.13), (5.14) the resulting char-
acteristic polynomial for the eigenvalues λ of ż = Cz−z onM = {1, . . . ,m}, z
is

(6.4) (λ+ 1)m − 1 = 0 .

As a spectrum we obtain the shifted roots of unity

(6.5) λ = e2πik/m − 1 ,

k = 0, 1, . . . ,m−1, with Re λ < 0 except for a trivial simple eigenvalue λ = 0.
The associated trivial eigenspace of k = 0 spanned by (1, . . . , 1) provides
multiplicity of stationary solutions, as claimed. Similarly, a modification
of the last equation żm = −c0z1 − zm with suitable c0 < 0 can provide
multiplicity of periodic solutions, due to purely imaginary eigenvalues.

This proves the lemma and completes the proof of theorem 1.3. �

On the cycle M itself the above linear construction can be perturbed slightly
to generic and robust situations, if desired. This will produce multiple stable
and unstable hyperbolic stationary or periodic solutions.

One may object that Γ is not the minimal graph compatible with the above
construction of a feedback cycle M disjoint from I. But, strictly speaking,
minimality of Γ has not been required. Speaking less strictly, though, a
slightly more intricate construction than we present here can also accommo-
date the additional requirement of minimality. We only have to ensure that
the coupling via the graph Γ remains constant on the particular values of
the multiple stationary or periodic solutions constructed on the cycle M . In
view of the ubiquitous switching behavior of nonlinearities which model bi-
ological regulatory networks, such local constancy may well occur. See also
the ascidian network example of section 7.1 as discussed in section 4-2 of
[Mo&al13].

7 Applications to biological networks

Modern biology provides many examples of large networks which describe
regulations between a large number of species of molecules, such as genes,
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proteins or ions. It is widely believed that the dynamics of molecular activi-
ties based on such regulatory networks are the origin of biological functions.
However, a variety of obstacles still impede attempts to systematically study
the dynamics of biological systems based on the knowledge of regulatory
networks. The regulatory networks in many studies of biological systems are
possibly still incomplete, at present, because of the difficulty and working
costs of experimental procedures to identify regulatory edges. In addition,
information on the regulatory network alone may not be sufficient to deter-
mine the resulting dynamics. The regulatory edges only provide information
on dependencies between activities of bio-molecules in the system. They fail
to provide necessary quantitative details like the regulatory functions, the
parameter values of reaction rates, and initial conditions.

In the present section we therefore identify key vertices of biological regula-
tory networks, called informative nodes in [MoSa10], which faithfully trace
the full dynamics of the network; see our feedback vertex theorem 1.3 and
our attractor reconstruction theorem 1.6. The specific dynamics, to be ex-
perimentally traced on the feedback vertex set, will of course depend on
further quantitative details like regulatory functions, reaction rates, and ini-
tial conditions. For identification purposes via determining nodes, or for
reconstruction of the dynamics on the global attractor, such quantitative
details are irrelevant. Incompleteness of the theoretical regulatory network,
however, may show up by inconsistencies of the traced dynamics.

We provide three biological applications of our theory in this section. We
discuss prominent regulatory networks from the biology literature for cell-
differentiation, signal transduction, and circadian rhythms. In the first two
examples, we determine very small informative sets from rather large regu-
latory networks. We also discuss the possible inability of these networks to
generate observed biological phenomena. This directly implies that unknown
edges or unknown molecules may exist which are responsible for these ob-
served phenomena. In the last example, we numerically demonstrate how to
control a system by a minimal and sufficient number of key variables given
by an informative set. For a more detailed analysis from a biological view
point we refer to the companion paper [Mo&al13].
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Figure 5: A gene regulatory network for cell-differentiation in early develop-
ment of the ascidian Ciona intestinalis, redrawn based on [Im&al06]. Our
redrawing removed 16 edges of self-repression from the original network be-
cause self-repression can be subsumed under decay condition (1.5).

7.1 Ascidian network

We consider a gene regulatory network determined by [Im&al06], which is
responsible for cell-differentiation in the development of the ascidian Ciona
intestinalis from the 16-cell stage to the tail-bud stage. In the focal period,
the difference in gene activities between cells progresses with time, and 13
different gene expression patterns are observed at the final, tail-bud stage,
depending on the position of cells in the body. The system is expected to
be flexible enough to produce many steady states of gene activities, which
correspond to differentiated cells. In the study 80 genes were identified to
control embryogenesis of Ciona. The regulatory interactions between these
genes were determined by perturbation analysis, where the activity of one
gene was manipulated and the effects were examined.

The network determined by [Im&al06] possesses 80 vertices and regulatory
edges between them. The regulatory edges are categorized into two classes,
activation and repression. As we have discussed in connection with our decay
condition (1.5) we do not distinguish between activation and repression here,
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Figure 6: A gene regulatory network for cell-differentiation of the ascidian
Ciona intestinalis after removing vertices without input or output from the
network in Figure 5. The network possesses a single feedback vertex FoxD-
a/b.

except for self-regulatory edges. There are 16 genes with self-regulatory
edges, all of which are self-repressions. We remove these self-repressive edges
from the network because any self-repression can be subsumed under the
decay condition (1.5), i.e. a negative partial derivative of Fk with respect to
the argument zk. See Figure 5 for the resulting regulatory network.

As a preparation we removed the vertices which do not regulate any vertices
or which do not receive any regulations. These top or bottom genes converge
to fixed inputs or provide outputs of the system which do not contribute to
the diversity of attractors. The removal procedure was repeated while the
network had vertices with no input or no output. Note that this iterative
reduction preserves all di-cycles, and hence preserves any minimal feedback
vertex set. We obtained the reduced network of Figure 6 with only 7 vertices.
The network clearly possesses a unique minimal feedback vertex set which
consists of only a single feedback vertex, FoxD-a/b.

All long-term dynamics on the global attractor possibly generated by this
gene regulatory network can therefore be identified by measurement of the
activity of the single gene FoxD-a/b. If the 13 different gene expressions
observed in differentiated cells at the tail-bud stage are stable equilibria of
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this system, their diversity should be identified by the activity of FoxD-a/b.
Actually[Im&al06] provided data of gene expressions in differentiated cells.
However, they are interpreted in a discrete and binary manner, i.e. active
(1) or inactive (0), as usual in many studies of present experimental biology.
Of course, the diversity of 13 different stationary gene expression patterns
cannot be identified in a single binary space which consists of only two points.

There are multiple ways to resolve this problem. First, we may be able to
identify 13 different gene expression patterns if we measure the activity of the
FoxD-a/b gene quantitatively. The second possibility is that gene expressions
at the tail-bud stage may not be stable equilibria of the ordinary differential
equation system (1.3) associated to the regulatory network. A third possi-
bility is that the regulatory network in [Im&al06] may not be complete and
there are unknown regulatory edges that would produce feedback loops which
are not cut by FoxD-a/b.

7.2 Signal transduction network

A variety of cell responses are induced by the surrounding environment or
by other signals from outside a cell. The signaling pathway downstream of
the epidermal growth factor (EGF) receptor has been studied in mammalian
cells. It has been shown to regulate a large diversity of cell responses in-
cluding proliferation, migration, oncogenesis, and apoptosis. The process by
which the growth factor signals induce cell reactions can be described roughly
as follows: by the ligand-binding to the EGF receptor, the tyrosine-kinase ac-
tivity of the receptor is induced. The activated EGF receptors phosphorylate
and activate the target proteins. The activation of proteins causes activation
of other species of molecules and the activation signal is transferred through
a series of species of molecules, sequentially. The signal is finally transferred
into the nucleus, regulates gene expressions and causes changes in macro-
scopic cell behavior. The diverse reactions of the cell are produced by this
signal transduction system. In other words, the signal transduction network
is a system for the determination of the macroscopic behavior of mammalian
cells after receiving the signal molecule stimulus from outside. Many stud-
ies of signal transduction focus on the crucial question how a single system
produces multiple output responses depending on the stimulus inputs from
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Figure 7: Signal transduction network downstream of the EGF receptor,
redrawn based on [Oda05]. The vertices without input or output are removed
from the original. We mark one particular choice of a minimal feedback vertex
set with five elements by circles and polygons with solid line boundaries.
Corresponding elements to construct alternative minimal feedback vertex
sets are shown by corresponding polygons with broken line boundaries. See
also table 1.

outside the cells.

We analyze a regulatory network of signal transduction suggested by [Oda05].
The authors collected information on pathways of signal transduction from
published papers, which are determined by various experimental methods.
They summarized the information of regulation between molecules, and con-
structed a complex regulatory network of 113 species of molecules including
kinases, phosphatase, or ions like Ca2+, and many regulatory edges between
them. There is no self-regulatory edge in this network. As a preprocessing we
removed vertices without input or output as described in our above analysis
for the ascidian network, see section 7.1. The resulting reduced network is
still complex and possesses 61 vertices.
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We adopt a method of computer-aided search to determine a feedback vertex
set of minimal size. Our search algorithm is simple, using only definition 1.2
of a feedback vertex set, and exhaustive, starting from smaller to larger size
of candidate sets. We found 36 ways to select the feedback vertex set with a
minimum of five vertices.

(1) (2) (3) (4) (5) # combinations

SOS HB-EGF cyt Ca2+

ErbB11 ERK1/2 c-Src CaM PI4,5-P2 2*3*3=18
ADAMS CaMKII

PI4-P
HB-EGF DAG

ErbB11 SOS c-Src cyt Ca2+ PKC 3*6=18
ADAMS PLD

phosphatidyl acid
PI5K

Table 1: List of 36 different choices of feedback vertex sets of the signal
transduction network. The last column lists the number of different choices
which arise combinatorially, in each row.

Table 1 shows the possible choices of vertices to form a minimal feedback
vertex set. The vertices in these sets are categorized into five groups, which
are shown in different shapes of polygons in Figure 7.

The regulatory network of signal transduction is expected to model a broad
variety of dynamic responses in the global attractor, depending on the stim-
ulus signals from outside the cell. Actually this interpretation is still hy-
pothetical and is not yet confirmed by experiments. We need time-series
data of activities of key molecules to faithfully represent the dynamics of
the system. For this purpose we have to select which molecules to track,
because it is still difficult to simultaneously measure the activities of many
molecules with sufficient time-resolution for discussing their dynamics. Our
theory provides rational criteria to select those key molecules. Measuring the
time tracks of five feedback vertices experimentally in different environments,
after receiving the stimulus signals, will faithfully represent the diversity of
the dynamical response of the whole system. If we discover, on the other
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hand, that the time tracks of five feedback vertices are not sufficient to ex-
plain all of the expected reactions, then we may be forced to conclude that
the original network missed some important edges or molecules.

7.3 Control of mammalian circadian rhythm

In this example, we explore a control aspect of our theory. We demonstrate
that the dynamics of the whole system can be controlled by controlling the
dynamics of only a feedback vertex set. Note that our setting does not involve
control via any feedback loop. Rather we clamp the feedback vertices to
follow a known, desirable solution of the original full system for all forward
times. This forces the full system to follow that precise same trajectory,
eventually, independently of any other initial conditions outside the feedback
vertex set. For further comments on our open-loop approach see sections 7.4
and 8.4.

Mammalian circadian rhythms in mice have been studied well, experimen-
tally. Four major genes are involved in the system: Per1, Per2, Cry1 and
Cry2. The regulations between genes and the interactions between these
proteins have been examined in detail. The system in a normal animal ex-
hibits periodically oscillating gene activities. Many mathematical models for
the system were proposed and studied. At present, all mathematical models
include assumptions on experimentally unverified facts, in particular in the
specific formulae and parameters of the regulatory functions. In some stud-
ies models were analyzed mathematically or numerically and conditions for
periodic oscillations were determined.

For our numerical experiments we use a mathematical model proposed by
[Mi09], which includes 21 variables and 132 parameters. The ordinary dif-
ferential equations and our choice of parameter values are detailed in the
Appendix. The regulatory network is shown in Figure 8a. The size of
the feedback vertex set I is 7, I = {PER1, PER2, CRY1, CRY2, RORc,
CLK/BMAL1, CLK}. We found that the dynamics of the model shows
multiple asymptotic behaviors including two stable periodic oscillations (P1
and P2), one unstable periodic oscillation (UP), and one unstable stationary
point (USS) under a choice of parameter values, which are different from
the original values in [Mi09]. Figure 8c shows the dynamical trajectory of
these asymptotic behaviors on two dimensional space, Per1 mRNA and Per2
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Figure 8: Dynamical system of mammalian circadian rhythms. (a) A reg-
ulatory network with 21 variables, redrawn after [Mi09]. Our choice of a
feedback vertex set I is marked by circles. (b) Trajectories of two attractors,
period1 (P1) and period2 (P2), unstable period (UP) and unstable station-
ary state (USS), represented by time tracks of the variable Per2. Vertical
axis: Per2, horizontal axis: time t. Dotted and broken curve: P1, dotted
curve: P2, broken curve: UP, solid line: USS. (c) Two stable periods and
an unstable period, and an unstable stationary state, identified by the two
variables Per1 and Per2. These two variables are not in the feedback vertex
set. Broken or dotted curves identify the same cycles as (b).

32



Pe
r2

Per1
0.15 0.30

1.5

3

0.15 0.30

1.5

3

Pe
r2

0.15 0.30

1.5

3

Pe
r2

Per1
0.15 0.30

1.5

3

Pe
r2

Per1

a

dc

b

P1

P1

P2

UP

0.09 0.12

0.4

0.7

Pe
r2

Per1
P1

P2

0.09 0.12Per1

0.09 0.12Per1

0.4

0.7

Pe
r2

0.4

0.7

Pe
r2

Per1

P1

0.09 0.12Per1

0.4

0.7

Pe
r2 USS

Figure 9: Numerical trajectories of successful open loop controls of circadian
rhythms by the full feedback vertex set I. The horizontal and vertical axes
are Per1 and Per2, respectively, which are not in the chosen feedback vertex
set I. Zooms into P2, UP, and USS are shown as top-right inserts. (a)
Trajectory of the control experiment ”from P1 to P2” is shown by black
solid curve. Known stable cycles P1 and P2 are shown by gray solid curves.
(b) Black solid: trajectory of the control experiment ”from P2 to P1”. Gray
solid: P1 and P2. (c) Black solid: trajectory of the control experiment ”from
P1 to UP”. Gray solid: P1 and UP. (d) Black solid: trajectory of the control
experiment ”from P1 to USS”. Gray solid: P1, open dot: USS.
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mRNA.

We performed four numerical experiments, controlling ”from P1 to P2”,
”from P2 to P1”, ”from P1 to UP” and ”from P1 to USS”. We exam-
ined whether the system is controlled by prescribing the time tracks of the
7 informative variables in the feedback vertex set I. As a preparation we
calculated the time tracks of each informative variable zk on the four invari-
ant sets, P1, P2, UP and USS, by numerical simulation, i.e. zP1

k (t), zP2
k (t),

zUP
k (t) and zUSS

k (t) (0 ≤ t ≤ T ).

The protocol of our numerical experiment called ”from P1 to P2” is the fol-
lowing: the forward time tracks of the 7 informative variables are prescribed
to follow their values zP2

I (t), as on P2. The dynamics of the remaining 14
variables are calculated by the remaining ODEs of the system, and the initial
state of these remaining variables is chosen to coincide with a point on the
P1 trajectory. We used different points on the P1 orbit as initial state.

The results did not depend on the initial point on P1, as much as we exam-
ined. We observed how the dynamical trajectory starting from the P1 soon
left that stable periodic orbit, and quickly converged to the competing P2
orbit. The total system finally shows periodic oscillation on the P2 orbit.

Following the analogous protocol, we examined the opposite experiment
”from P2 to P1”. The tracks of the 7 informative variables in the feed-
back vertex set I are now prescribed to follow their values zP1

I (t) on P1, and
the dynamics of the remaining 14 variables are calculated by the remain-
ing ODEs with an initial state on P2. In the experiment we observed that
the total system soon left P2, this time, and converged to P1 following the
prescribed informative dynamics zP1

I (t).

Next we examined the experiment ”from P1 to UP”, where the tracks of the
7 informative variables in the feedback vertex set I are prescribed to follow
their values zUP

I (t) on UP, and the dynamics of the remaining 14 variables are
calculated by the remaining ODEs with an initial state on P1. It is interesting
how control of the feedback vertex set, only, forced the total system to stably
converge towards the periodic oscillation UP, even though this oscillation was
unstable in the full system.

Finally we examined the numerical experiment ”from P2 to USS”: the 7 in-
formative variables zI(t) in the feedback vertex set are fixed at their constant
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Figure 10: Numerical trajectories of failed open loop controls of circadian
rhythms by the reduced vertex set I ′ = I \ {CLK, CLK/BMAL1} = {PER1,
PER2, CRY1, CRY2, RORc}. (a) Trajectory of the failed control experiment
”from P1 to P2”: black solid. Gray solid: stable cycles P1 and P2. Bottom-
center: zoom into P2. Top-right insert: trajectory for the same range of Per1
and Per2 as in Figures 8c and 9. Top-left insert: Poincaré section of (Per1,
Per2 ) at CLK=0.675. (b) Trajectory of the failed control experiment ”from
P1 to USS”: black solid. Gray solid: P1, open dot: USS. Top-right insert:
zoom into UP.

values of the unstable stationary point zUSS
I , and the remaining 14 variables

are calculated by the ODEs with an initial state on P1. Again we found
that the total system converged to the unstable stationary point zUSS and
remained there, stably, by the control of the feedback vertex set I, only.

Deviating from the safe feedback vertex protocol of theorems 1.3 and 1.6, we
found that the reduced feedback vertex set

(7.1)
I∗ : = Ir{CLK}

= {PER1, PER2, CRY1, CRY2, RORc, CLK/BMAL1}

is actually sufficient, when clamped, to control the remaining network on
ΓrI∗, even though ΓrI∗ contains a 2-loop CLK ↔ BMAL1.

We conclude that controlling the reduced feedback vertex set I∗ is indeed
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sufficient to control the total system, even when the target state is unstable
originally. We give a mathematical reason for this surprising fact in section
7.4.

We next examined whether the system can be controlled equally well by
a further reduction of vertices. We control only 5 among the 6 variables
of I∗ and try to control the system ”from P1 to P2”. We prescribed the
forward time tracks zP2

I′ (t), I ′ = {PER1, PER2, CRY1, CRY2, RORc}. The
dynamics of the remaining 16 variables, including the omitted informative
nodes CLK and CLK/BMAL1, are calculated by ODEs with an initial state
on P1. The result is shown in Figure 10: the trajectory converged to an
unknown spurious quasiperiodic oscillation, and not to P2. Similarly we
performed numerical experiments ”from P2 to P1”, ”from P1 to UP” and
”from P1 to USS”. The control of the system succeeded in the cases ”from
P2 to P1”, ”from P1 to UP”, and failed in the case ”from P1 to USS”. This
demonstrates that controlling a non-informative set I ′ of feedback vertices
set may fail to control the system.

We caution our reader that the above results do depend on the choice of
prescribed variables. Controlling the forward time tracks zI”(t) of the 5
variables I” = {PER1, CRY1, CRY2, RORc, CLK/BMAL1} among the 6
informative variables, for example, we can again control the dynamics of
the whole system. In [Mo&al13], on the other hand, we observe how the 6
variables I∗ = {PER1, PER2, CRY1, CRY2, RORc, BMAL1} fail to control
the remaining variables in three out of the four above protocols, even though
I∗ ∪ {CLK} also is a minimal feedback vertex set.

Our experiments demonstrate that even the reduced feedback vertex set I∗ is
a sufficient set to control the whole regulatory network. Our result provides a
rational criterion to select variables if we aim at efficient open loop control of
complex systems which involve many variables. It is quite powerful for bio-
logical systems, because biological systems are usually very complex: in many
cases the regulatory edges are the only available information. Recent life sci-
ences are aiming at the control of biological system for medical purposes. The
problems of circadian rhythms in human, for example, cause physiological or
mental diseases, including sleep difficulty or depression. Such problems may
be solved if we succeed to control the activities of some genes. Of course it
will remain impossible to control all molecules in a circadian rhythm system.
Thus we have to select minimal but sufficient sets of accessible molecules
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to control the system. Our theory may contribute to this ambitious goal,
providing a rational criterion to identify key controlling molecules based on
the graph information of their regulatory edges, alone.

7.4 Reduced feedback vertex sets

In this section we discuss the specific mathematical reason why the reduced
feedback vertex set I∗ of (7.1) was sufficient to control the remaining regula-
tory network ΓrI∗ when clamped to an existing solution zI∗(t).

Let J denote any set of vertices, not necessarily of feedback vertex type. We
clamp variables z∗J(t) on J to a known solution z∗(t) = (z∗J(t), z∗ΓrJ(t)) of the
full network Γ. This is best described by a splitting of variables

(7.2)
żJ = FJ(zJ , zΓrJ) ,
żΓrJ = FΓrJ(zJ , zΓrJ) .

with suitable nonlinearities FJ , FΓrJ . The trajectories ζ(t) of the remaining
network ΓrJ then satisfy

(7.3) ζ̇ = FΓrJ(z∗J(t), ζ) .

Note that (7.3) is a nonautonomously forced regulatory network, as in (1.1),
on the remaining graph ΓrJ , which has all vertices J deleted along with all
edges oriented from or towards J . Forcing comes from the clamped variables
z∗J(t). By assumption, ζ(t) := z∗ΓrJ(t) is a particular solution of the remaining
network (7.3).

For example, first suppose J = I is indeed a full feedback vertex set. Then
ΓrJ is acyclic, hence with empty feedback vertex set. Therefore theorem
1.3 implies

(7.4) ζ(t)− z∗ΓrJ(t) −→
t→+∞

0 ,

for any solution ζ(t) of (7.3). Therefore clamping a full feedback vertex
set I controls all remaining variables ζ(t) to eventually follow the reference
solution z∗ΓrJ(t).

In the circadian section 7.3, however, we clamped only a reduced feedback
vertex set J = I∗ = Ir{CLK}. Still we were able to control all remaining
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variables zΓrJ , including CLK itself. We now give a mathematical reason
for that phenomenon, based on the network graph of Figure 8 and, as well,
on the specific form of the nonlinearities of our simulation, as given in the
appendix. Indeed the network alone cannot reveal such insight, in view of
the only-if-part of theorem 1.3.

We first observe, by Figure 8, that the variables RORc, CLK/BMAL1, Clk,
and Bmal1 can be assumed to be given. Indeed the subsystem of CLK and
BMAL1 does not feed back into those feed variables, except through the
known clamped variable CLK/BMAL1 of I∗. We can therefore rewrite the
subsystem for C := CLK and B := BMAL1 as

(7.5)
Ḃ = β(t) − aBC − kBB

Ċ = γ(t) − aBC − kCC

with obvious abbreviations for a, β(t), γ(t), kB, kC ; see (9.15), (9.14). Note
a, kB, kC , B, C > 0. As in the proof of lemma 3.2, the differences (b, c) :=

(B̃, C̃)−(B,C) of any two solutions of (7.5) satisfy a similar nonautonomous
linear system

(7.6)
ḃ = −(aĈ(t) + kB)b − aB̂(t)c

ċ = −(aB̂(t) + kC)c − aĈ(t)b

The coefficients B̂(t), Ĉ(t) are positive and uniformly bounded, interpolating

between positive solutions B,C and B̃, C̃.

To show control z(t) − z∗(t) → 0 for t → +∞, as before, we only have to
show b, c → 0. First suppose b, c > 0 for all t ≥ 0. Then ḃ, ċ < 0, by (7.6),
implies monotone decay. Hence the limits

(7.7) lim
t→+∞

b(t) = b∞ ≥ 0, lim
t→+∞

c(t) = c∞ ≥ 0

exist. Positivity contradicts (7.6); hence b∞ = c∞ = 0. In case b, c < 0 we
argue for the solution −(b, c), analogously.

Next consider the case b > 0 = c, for some t0 > 0 (again with completely
analogous symmetric cases b < 0 = c, b = 0 < c, b = 0 > c, which we omit).
Then ċ(t0) < 0 implies b > 0 > c immediately afterwards, and for all t > t0.
Let us therefore consider the case b > 0 > c (omitting b < 0 < c). Then
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b− c > 0 and d
dt

(b− c) = −kBb+ kCc < 0 successively imply

(7.8)
lim
t→+∞

(b(t)− c(t)) = 0 , and

lim
t→+∞

b(t) = lim
t→+∞

c(t) = 0 .

This proves control (7.4) by clamping the circadian model at the reduced
feedback vertex set I∗ := Ir{CLK}, only. Our analysis confirms the numer-
ical observations of section 7.3.

8 Discussion

We conclude the paper with a discussion of the scope and perspectives of
our results. We review some further examples in section 8.1. Collecting
caveats on the limitation of our approach, in 8.2, we happily proceed to
generalize in 8.3. Section 8.4 indicates a few further areas of applications
and we summarize our conclusions in 8.5.

8.1 Further examples

As further examples we discuss the damped harmonic oscillator, some simple
chemical reaction networks, and the slightly more restrictive class of gene
regulatory networks studied in [MoSa10].

In section 5.1 we have seen how an empty informative set I = ∅, i.e. ab-
sence of directed cycles, implies convergence to the unique globally asymp-
totically stable stationary solution. The linear Frobenius example of section
5.5, on the other hand, has already indicated some of the high-dimensional
quasiperiodic complications to be encountered, even when the informative
set I contains but one single element. The planar example of a single 2-cycle
loop in section 5.3 and the Lorenz equations of section 5.4 have revealed
some of the nonlinear dynamics complications which may arise for |I| = 1.
We also recall the formidable ascidean network of section 7, where |I| = 1.

It is tempting, perhaps, to seek a further reduction of the damped harmonic
oscillator

(8.1) z̈ + 2νż + ω2z = 0
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Figure 11: Regulatory graph of the damped harmonic oscillator. Note the
negative feedback from vertex 1 to vertex 2 for negative discriminant ν2−w2.

to an empty feedback vertex set, because global asymptotic stability of z ≡ 0
prevails, for any ν > 0. The equivalent system

ż1 = z2 −νz1

(8.2)
ż2 = (ν2−ω2)z1 − νz2

is a regulatory network which consists of a single loop of length 2; see section
5.3.
Negative discriminant, ν2 < ω2 implies negative feedback along the cycle;
see Figure 11. We have already indicated in (1.6) how any negative self-
feedback of vertex k can be incorporated into the negative feedback condition
∂1Fk < 0. It would be quite mistaken, however, to seek such a generalization
of the present example and expect an empty informative set I = ∅, in
general. Indeed consider the nonautonomous case ω2 = (ω(t))2 where the
proper frequency is allowed to depend on time, periodically. It is well-known
that z ≡ 0 can be destabilized by suitable choices of ω(t) > 0. Indeed this
is how children destabilize the boring rest state of a swing by raising and
lowering their center of gravity at twice the swing’s proper frequency. See
for example the study of the Mathieu equation and related destabilization
phenomena in [Arn73].

As a second example we briefly indicate how to subsume chemical reaction
networks under the class of autonomous regulatory networks (1.3). First let
us consider a simple reaction step

(8.3) Z1 + Z2 −→ Z3 + Z4 ,

where Zj indicate chemical substances with concentrations zj. Assuming
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Figure 12: The regulatory graph contributed by a chemical reaction Z1 +
Z2 −→ Z3 + Z4 see (8.3), (8.4).

decay and/or dilution rates dj of zj we obtain

ż1 = . . .− k(z1, z2)− d1z1

ż2 = . . .− k(z1, z2)− d2z2

(8.4)
ż3 = . . .+ k(z1, z2)− d3z3

ż4 = . . .+ k(z1, z2)− d4z4

if we omit contributions of other reactions in the network. The reaction
kinetics k(z1, z2) can still be chosen arbitrarily. Examples are mass action
kinetics k = κz1z2 or Michaelis-Menten terms k = κz1z2/(1 + κ1z1 + κ2z2).
See Figure 12 for the contribution of this reaction to the total regulatory
network. Here we assume zj > 0 and ∂1k, ∂2k > 0 to omit self-loops at
vertices 1 and 2. Note the 2-cycle 1 ←→ 2. If Figure 12 is the complete
reaction network, we need informative sets I of a single vertex from {1, 2},
for the single forward reaction (8.3).

The reverse reaction of (8.3) will contribute another 2-cycle 3 ←→ 4 to
the graph, analogously. In fact the resulting graph will be the complete bi-
directional graph with four vertices. Reversible reactions therefore require
and accommodate any choice of three vertices. More realistic networks and
appropriately more intricate regulatory graphs can be built accordingly, and
will be able to accommodate very general reaction rate expressions.

To be a little more specific consider the simple catalytic reaction step

(8.5) Z1 + Z2 −→ Z1 + Z3
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Figure 13: The regulatory graph autocatalytic chemical reaction Z1 +Z2 −→
Z1 + Z3; see (8.5), (8.6).

with decay/dilution and constant feeds a1, a2 > 0 of the inputs Z1, Z2. Then

ż1 = a1 −d1z1

ż2 = a2−k(z1, z2)− d2z2(8.6)

ż3 = k(z1, z2)− d3z3

See Figure 13 for the regulatory graph of (8.5), (8.6) under the above mono-
tonicity assumption on the quite general reaction rate k(z1, z2). Since the
regulatory graph is acyclic, the informative set is empty and global conver-
gence to the unique equilibrium, for t → +∞ ensues. Of course this is also
evident from the ODE (8.6). Indeed z1 → z∗1 := a1/d1 implies z2 → z∗2 with
0 = a2 − k(z∗1 , z

∗
2)− d2z

∗
2 and hence z3 → z∗3 := k(z∗1 , z

∗
2)/d3.

As a third example we return to the slightly more specific form

(8.7) żk = fk(t, zIk)− dk(t)zk ,

k = 1, . . . , N , of regulatory networks originally discussed by [Mo08, MoSa10].
For dissipativeness we assume all fk, ∂zfk ∈ C0 to be uniformly bounded and
dk > 0 to possess unbounded integrals

(8.8)

∫ t

−∞
dk = +∞ ,

for all t ∈ R. Suppose zk(t) are known for all t ∈ R and all k in an informative
set I. We choose an ordered labeling such that I = {N ′ + 1, . . . , N} and
In′ ⊆ I ∪ {1, . . . , n′ − 1}; see lemma 2.2. We can then explicitly determine
the noninformative forward time tracks zn′(t), t ∈ R, n′ = 1, . . . , N ′, of
globally bounded solutions z(t), t ∈ R, by induction over n′. Indeed fix
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t0 ∈ R arbitrarily and invoke variations-of-constants with the abbreviation
ϕk(t) := fn(t, zIk(t)) in

(8.9) żk(t) = ϕk(t)− dk(t)zk(t)

to obtain

zn′(t) = exp

(
−
∫ t

t0

dn′(s)ds

)
zn′(t0)+

(8.10)

+

∫ t−t0

0

exp

(
−
∫ t

t−s
dn′(σ)dσ

)
ϕn′(t− s)ds

for all n′ = 1, . . . , N ′ and all t ∈ R. For t0 → −∞, boundedness of z on R
and assumption (8.8) imply

(8.11) zn′(t) =

∫ +∞

0

exp

(
−
∫ t

t−s
dn′(σ)dσ

)
ϕn′(t− s)ds.

Because ϕn′(t) depends only on zk(t) with k ∈ In′ ⊆ {1, . . . , n′−1}, by lemma
2.2, equation (8.11) is an explicit recursive formula for n′ = 1, . . . , N ′ which
determines all the complementary nodes from the informative data. In the
autonomous case, (8.11) is an explicit expression which inverts the injective
projection PIz(0) := zI(·) of theorem 1.6 for z(0) in the global attractor A.

If informative forward time tracks zI(t) are not known globally, but only on
sufficiently long intervals 0 ≤ t ≤ T , then (8.10) with t0 = 0 provides a
recursion with exponential error estimates of order

(8.12) exp(−δT ),

for zn′(T ), provided that all remaining dn′(t) are uniformly positive and

(8.13) inf
t
dn′(t) > δ > 0

for all n′ = 1, . . . , N ′. The same exponential error estimate (8.12) holds for
general regulatory networks (1.1) provided that

(8.14) inf
t,z
−∂1Fn′(t, zn′ , zIn′ ) > δ > 0 ,

by analogous arguments. Due to the nonlinear dependence of Fn′ on zn′ ,
however, we lack an explicit recursive expression like (8.11) for the bounded
solutions zn′(t) on the remaining nodes.
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8.2 Caveats

We recall and outline some limitations of our results. We address determi-
nation of the informative set I, its necessity for being determining, and we
caution against mistaking I as a dimension reduction.

Our first caveat concerns the determination of the informative vertex set I of
the regulatory di-graph Γ, which in turn provides the determining nodes for
the regulatory ODE (1.1). By corollary 2.4 the informative set I is a feedback
vertex set of Γ, intercepting all directed cycles. Deciding on existence and
finding k-element feedback vertex sets of a di-graph Γ is long known to be
NP-complete in the number N of vertices. See [Ka75], and for more recent
progress [Ch&al08]. As regulatory networks get more complex, then, the
mere task of identifying suitable sets I of determining nodes may become a
practical obstacle, eventually. In the modest examples presented here this
task could still be settled bare-handedly. In fact the accessibility of data
should play a more important role for the selection of the informative set
I, in actual experiments, than complexity or minimality considerations on
the feedback vertex set I. Redundancy of I may indeed be a welcome tool
to cross-check results and to indicate possible errors in the hypothesized
regulatory network itself.

A second caveat concerns necessity of the full informative set I, to be deter-
mining. The example of a mammal circadian regulatory network in sections
7.3 and 7.4 has already indicated that a small enough subset I ′ of a minimal
informative set I may fail to determine the asymptotics of specific reference
solutions, even when I ′ has been clamped to follow that reference solution
precisely. The opposite phenomenon appears in our proof of the only-if-part
of theorem 1.3, in a slightly different guise; see section 6. To show that a
determining set I is necessarily informative, alias a feedback vertex set, it
is not sufficient to just require I to be determining for a fixed regulatory
ODE manifestation of the di-graph Γ by a choice of nonlinearities Fk. It
was actually necessary to require I to be determining for all choices of Fk.
It is therefore not too surprising that smaller subsets I ′ of I, which are not
informative, may still be determining on some specific occasions. If we seek
determining nodes of a complex regulatory network based on its di-graph
Γ, only, and without additional modeling information on Fk, then the full
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feedback vertex sets alias informative sets I are the monitors of choice.

Naive application of Takens embedding [Ta10] would claim attractor recon-
struction by monitoring the time track zk(t) of just a single vertex k. Of
course such a naive approach is not warranted by the genericity require-
ments of the actual Takens embedding theorem. Indeed it patently fails, for
example, at any input vertex k with empty predecessor set Ik of any regula-
tory network (1.3) with nontrivial dynamics: while zk(t) tends to the same
constant, for all initial conditions, z(t) does not. Of course that failure is
due to an inappropriate choice of the monitoring vertex.

It may still be possible, however, to reconstruct the global attractor A from
observations on one or very few suitably chosen single nodes k, in generic
situations. Under mild assumptions on the network graph, Joly [Jo11] has in
fact shown how stationary and periodic solutions can be reconstructed from
the time track of just a single node. His main assumption is C1 genericity
of the regulatory functions which define the network. For a precursor result
under more restrictive assumptions on the graph Γ see also [Go&al10].

Genericity is an abstract assumption rather than a concrete one: reconstruc-
tion works for nonlinearities Fk in some abstract set of large Baire category,
viz. a countable intersection of sets each of which is open and dense. On the
downside, C1 genericity might mean that the result fails for all nonlinearities
of differentiability class C2. More importantly, and more realistically, the
assumption will exclude the biologically relevant switching behavior where
some nonlinearities become independent of some of their inputs, in certain
open regions of phase space. Indeed such switching may locally undermine
the underlying graph structure exploited globally for the beautiful genericity
result of Joly.

To illustrate genericity we only discuss a linear example here. Consider
a diagonalizable N × N matrix C with distinct eigenvalues λj ∈ C and
eigenvectors zj. Generically we may also assume all non-diagonal entries of
C to be nonzero, and all components zjk of all eigenvectors to be nonzero,
likewise. Then

(8.15) ż = Cz − z

is a regulatory network with at least the complete graph contained in the
network graph Γ. Diagonal elements ckk ≥ 1 of C will add self-loops. Any
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minimal feedback vertex set I therefore contains at least N−1 elements. On
the other hand the time track zk(t) of any single vertex k will be sufficient
to faithfully reconstruct z(t), in this generic situation. This is reminiscent of
the Frobenius example of section 5.5 in (5.16), (5.17), where the single vertex
N was determining.

Additional special structures of the regulatory network may also assist in
attractor reconstruction from orbits other than the feedback vertex set. The
Lorenz system (5.10) of section 5.4, for example, also allows reconstruction
from z1(t), t ∈ R−, even though I = {2} is the only minimal feedback vertex
set. Indeed (5.10) implies that the determining time track z2 = z1 + ż1/σ is
also known, once z1 is. With slightly more effort z1, and hence z2, can also
be reconstructed from z3(t), t ∈ R−, on the global attractor.

Neither the genericity result [Jo11] nor these examples contradict the only-
if-part of theorem 1.3. Our result holds for all nonlinearities, not only some
particular or many unspecified “generic” ones. These, and many other, ob-
jections notwithstanding it remains important to welcome, to explore, and
to further clarify the elegant Takens embedding approach and its intriguing
interaction with the network topology.

Our third caveat concerns dimension reduction. In PDEs, viz. in dynamics
in infinite dimensions, the question of a reduction of the dynamics on finite-
dimensional global attractors to an ODE has been thoroughly investigated
under the name of inertial manifolds; see for example [MPSe87, Co&al89,
FoTi91, Ed&al94, SeYo02] and others. Even in finite dimensional ODEs
like our regulatory networks a reduction of dimensions is always welcome.
We caution our reader, however, that we do not claim a reduction to any
ODE on the informative set I. Again, the linear Frobenius case of section
5.5 provides an autonomous counterexample: even though I = {N} is a
singleton, periodic and quasiperiodic solutions do arise.

In general, knowledge of only an initial condition zI(0) on the feedback vertex
set I is not sufficient to determine the full history time track zI(t), t ∈ R−.
But only when that history time track is known, theorem 1.6 asserts the
reconstruction of z(0), and hence of the full time track z(t) on the global
attractor.

For stationary solutions, only, the initial condition zI(0) on the feedback
vertex set determines the full (constant) history time track zI(t), t ∈ R−. In
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that very special case, a dimension reduction to a closed equilibrium equation
involving only the feedback vertex variables zI is possible. See [Mo&al13] for
further details.

In the next section we will argue, however, that a reduction to an ODE on
the cyclicity set C of regulatory networks, i.e. to the union of all vertices on
di-cycles, is possible for the global attractor, also in the nonstationary case.

8.3 Generalizations

We briefly comment on five topics which involve adaptations and generaliza-
tions of the elementary results presented here. We begin with the question
of dimension reduction raised at the end of the previous section. We then
comment on the cases of discrete time as well as vector-valued and PDE set-
tings. Moving on to nonautonomous aspects we briefly mention stochastic
perturbations.

Consider the autonomous version (1.3) of a connected regulatory network Γ
under the assumptions of the global attractor theorem 1.6. For dimension
reduction on the global attractor A let C0 denote the cyclicity set of the
di-graph Γ, i.e. the set of all vertices which lie on di-cycles of length at least
two, or possess self-loops. For simplicity we first assume C0 to be strongly
connected, i.e. C0 contains directed paths, in either direction, between any
two vertices of C0. Collapsing C0 to a single vertex without self-loop, for a
moment, we can then decompose the vertices of Γ disjointly into

(8.16) {1, . . . , N} = C− ∪ C0 ∪ C+

such that C− are the predecessors and C+ the successors of C0 in the resulting
acyclic graph. In other words there exists a directed path from any element
of C− to some suitable element of C0, and from some suitable element of
C to any element of C+. Because C0 is assumed to be strongly connected,
exactly one of these alternatives holds for any vertex outside C0. In particular
induction shows that zC−(t) converges to a unique equilibrium because IC− =
∅ on the autonomous acyclic predecessor subgraph C−. Substituting this
equilibrium for values of zC− which occur in inputs Ik of k ∈ C0, we obtain
an autonomous reduced ODE

(8.17) żk = F̃k(zk, zIk∩C0)
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for k in the cyclicity set C0.

To show that the successor variable zC+ is in fact enslaved by the cyclicity
variables zC0 on the global attractor A, i.e.

(8.18) zC+ = Φ(zC0)

for a suitable function Φ : R|C0| → R|C+| we invoke theorem 1.6. Indeed let
z(0) ∈ A be in the global attractor. Then the unique bounded solution zC0(t),
t ∈ R− of (8.17) with initial condition zC0(0) determines zI(·) provided we
choose the informative set I to be a subset of the cyclicity set C0, without
loss of generality. But injectivity (1.14) then implies uniqueness of z(0),
and in particular of zC+(0). Now define the mapping Φ(zC0(0)) := zC+(0) to
complete the proof of the dimension reduction (8.17), (8.18) to the connected
cyclicity set C0.

The connected cyclicity set of the ascidian network in section 7.1, Figure 5,
with a singleton informative set is given in Figure 6.

The cyclicity set C0 may not be connected, in general. Collapsing each
connected component of C0 to a separate single vertex, then, we obtain a
disjoint Morse type decomposition of Γ into

(8.19) {1, . . . , N} = C− ∪ C0 ∪H ∪ C+ ,

as we explain next; see also [Ara&al09]. Here the cyclicity set C0 can be
decomposed into its disjoint strongly connected components

(8.20) C0 = C1 ∪ . . . ∪ Cm .

We label the components Cj of C0 such that any oriented path through any
vertex k ∈ H can be extended to hit cyclicity components Cj− , before k, and
Cj+ , after k, only if j− < j+. In other words the labeling Cj is compatible
with the partial order associated to the acyclic di-graph with individually
collapsed Cj. The vertices in C− precede all cyclicity, as before, and the
vertices in C+ are the ultimate successors.

Our previous arguments then apply inductively over j = 1, . . . ,m, to recover
a reduction (8.17) of the dynamics on the global attractor A to an ODE
on zC0 . Again zC−(t) tends to equilibrium on the ultimate predecessors.
Enslaving (8.18) extends to all remaining variables:

(8.21) zH∪C+ = Φ(zC0) .
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More precisely, in fact, zk is enslaved already by only those zCj for which the
“vertex” Cj precedes k in the acyclic collapsed regulatory graph. A similar
skew-product structure of predecession holds for the reduced ODE (8.17) on
the cyclicity set.

We plan to elaborate on such generalizations elsewhere in the context of
suitable applications. The topic of dimension reduction is indeed critical for
“model-free” representations of dynamics, for example via Takens embedding
[Ta10]: the required amount of data to accurately model the dynamics on
the global attractor grows exponentially with the dimension of A itself, and
a conservative bound on that dimension is the size |C0| of the cyclicity set.

Of course our results can be adapted to discrete time iterations

(8.22) zn+1
k = F n

k (znk , z
n
Ik

) ,

n ∈ Z, of regulatory networks. Dissipativeness extends to discrete time; a
sufficient condition to replace (1.4) would be a decrease of Euclidean norm

(8.23)
N∑
k=1

zTk F
n
k (zk, zIk) < |z|22 ,

uniformly for all integer n and for large |z|2. Similarly, the decay condition
(1.5) translates into

(8.24) |∂1F
n
k (zk, zIk)| < 1

uniformly for all n ∈ Z, k = 1, . . . , N and z ∈ RN . The autonomous case
F n
k = Fk requires the nonlinearities not to depend on the iterator variable n,

explicitly. Note that prehistories exist on the autonomous global attractor
A due to its construction as the ω-limit set of a large ball. Invertibility of
(8.22) to provide a unique extension in backwards time is not required.

Similarly our results extend to the ODE vector case zk ∈ Rmk of total di-
mension m = m1 + . . .+mN . A straightforward condition for dissipativeness
to replace (1.4), based on a decreasing Euclidean norm |z(t)|2, would be

(8.25)
N∑
k=1

zTk Fk(t, zk,Ik ) < 0 ,
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uniformly for t ∈ R and large |z|2. A sufficient decay condition to replace
(1.5) is

(8.26) ∂1Fk(t, zk, zIk) < 0 ,

uniformly for all t ∈ R, k = 1, . . . , N and bounded z ∈ Rm. Here (8.26)
indicates that the quadratic form of the Jacobian mk×mk matrix ∂1Fk with
respect to the first entry zk is to be strictly negative definite.

Similarly our results apply toPDE extensions of reaction-diffusion type, e.g.
of the form

(8.27) zk,t = Dk∆xzk + Fk(t, x, zk, zIk) ,

under appropriate conditions. The operators Dk∆ + ∂1Fk(t, ·, zk(·), zIk ·) for
example, should be negative definite. Here ∂1Fk again indicates the partial
derivatives with respect to the first occurrence of zk, and the arguments zk(·),
zIk(·) are arbitrary functions of x in the region Ω of the x-Laplacian ∆x, in the
appropriate Sobolev space. Note however that the present reduction requires,
and stops at, a full profile (t, x) 7→ zI(t, x) of the informative components,
both in t ∈ R− and x ∈ Ω. Just like the PDE dimension reductions discusssed
above, a further reduction of the determining profiles zI(t, ·) to finitely many
nodes or finitely many modes in x, e.g. in the spirit of [HaRa03], requires
additional analysis which we do not pursue here.

The effects of stochastic perturbations are closely linked to nonautonomous
effects. Indeed additive and parametric noise as well as the skew product
structure of stochastic cocycles [Arn98, KlRa11], can be subsumed under a
regulatory network structure

(8.28) żk = Fk(ω, t, zk, zIk)

where ω ∈ Ω fixes the specific variant of the nonlinearities Fk in some suitable
probability space Ω.

Here we assume that the overall directed graph Γ itself is not subject to
stochastic fluctuations of its regulatory predecessor structure Ik. Likewise we
assume that dissipativity like (1.5) remains valid, uniformly for all stochastic
instances ω ∈ Ω. Then theorem 1.3 remains valid in the stochastic setting,
for each choice of ω: any feedback vertex set I indeed remains a set of deter-
mining nodes which faithfully represents the dynamics z(t) of the stochastic
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regulatory network, asymptotically for t → +∞. Of course this easy and
direct observation does not replace an in-depth stochastic analysis of asymp-
totic expectations, variances, or the robustness of the regulatory tasks of the
network itself.

8.4 Further applications

We have mentioned chemical reaction networks as another application area
in section 8.1. We briefly glance at the wide fields of control, of chaos syn-
chronization, and at neural and electrical networks here.

A most direct and heavily invasive approach towards control of regulatory
network dynamics was already taken in section 7.3. In fact we have prescribed
zI(t) on an informative feedback vertex set of the circadian regulatory net-
work to follow a particular stable or unstable periodic or stationary reference
solution z∗(t) of the network. We observed how this was sufficient to enslave
the whole network dynamic z(t) to follow z∗(t), asymptotically for t→ +∞.
Any open loop control of an originally autonomous regulatory network (1.3)
in fact renders the network nonautonomous, as in (1.1). As in the stochastic
case (8.28) of section 8.3, feedback vertex sets remain determining in the
sense of theorem 1.3, as long as dissipativity and decay conditions remain
intact. The success of open loop control also suggests a prominent role of
feedback vertex sets as a target for more sophisticated closed loop feedback
control schemes in regulatory networks. For example it seems advisable,
whenever practically feasible, to rely on a prudently chosen feedback vertex
set I for a set of observables zI(t) to monitor the state of the regulatory
network. Likewise, input to the feedback vertex variable ODEs żi = . . . by
actuator control variables u(t) may prove efficient to control the entire net-
work dynamics. We hope to further pursue feedback control via feedback
vertex sets elsewhere.

The basic idea of chaos synchronization and the associated topic of signal
encryption by chaotic oscillators are related to open loop control. For a simple
example consider an autonomous dissipative regulatory network ż = F (z) on
RN with decay condition and inherently chaotic dynamics, like the Lorenz
system (5.10) of section 5.4. With two identical oscillators z1, z2 ∈ RN we
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may consider the first driving the second according to

ż1 = F (z1)
(8.29)

ż2 = F (z2) +D(z1 − z2)

Suppose we consider diagonal driving matrices D = diag(d1, . . . , dn) with
diagonal entries dk = 0 unless k ∈ I is in a fixed chosen feedback vertex set
I. For sufficiently large dk > 0 on k ∈ I this basically forces z2

I (t) to (almost)
coincide with z1

I (t), on I and hence everywhere:

(8.30) z2(t) ≈ z1(t)

after some initial transients; see theorems 1.3 and 1.6. Thus the first oscillator
z1 forces z2 into (almost) synchrony, even though the transmitted carrier
signal zI(t) may appear chaotic. Refined versions of this idea include input
signals to z1 which, after encryption into the chaotic transmitted signal zI(t),
are recovered from the full dynamics z2(t) of the second oscillator. See for
example [PeCa98, Be&al04] for further details. Our present contribution is
the systematic identification of the informative signal zI(t) to be transmitted:
I should be a feedback vertex set of a regulatory network description of the
chaotic oscillator ż = F (z) by its associated di-graph Γ.

Applications of our results to neural and electrical networks are tempt-
ing. For simplicity let us consider a system of N not necessarily identical
FitzHugh-Nagumo cells

ż1
k =fk(z

1
k)− z2

k + gk(z
1
Ik

) ,
(8.31)

ż2
k = ak(bkz

1
k − ckz2

k) ,

k = 1, . . . , N . See Figure 14 for a representation as a regulatory network.
The predecessor or input subsets Ik of z1

k define a di-graph structure Γ on
the z1-components, only. Choosing only z1

k to represent feedback vertices,
throughout the network, we see that feedback vertex sets of the coupling
graph Γ of the nerve cells become feedback vertex sets to the entire regulatory
network (8.31). Unfortunately the cubic nonlinearities fk which generate the
essential excitability feature of neurons also force self-loops at every vertex
z1
k of the network. This prevents further reduction to feedback vertex sets
I which are strictly smaller than the entire network Γ. On the other hand
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. . .

z2
k

. . .z1
k

Figure 14: Motif of a neural regulatory network which represents a single cell
of FitzHugh-Nagumo type. Self-coupling and neighbor coupling only occurs
in the variable z1

k.

neural networks provide an exciting field to further explore the idea of Morse
decompositions of networks outlined in (8.19)–(8.21) above, albeit with the
modification that the dynamics of individual vertices must accommodate
more elaborate excitable dynamics.

Man-made systems like electrical power networks are designed with the goal
of stability, quite contrary to the excitability property of neural networks.
One issue here is the monitoring and control of deviations of the electrical
phase zk throughout the vertices k = 1, . . . , N of the network. We may
represent the global coupling structure by a regulatory network di-graph Γ
again. Assume local controllers to stabilize phase, locally. This amounts to
a decay condition like (1.5). As a monitoring strategy we may then choose
a feedback vertex set I and use informative zI(t) sensors as observables to
carefully and faithfully represent the state z(t) of the entire network. We
may even select redundant informative sets to cross-check data and system
reliability. This simple observation, based on theorem 1.3 again, may assist
in the formidable task of designing flexible and “intelligent” power grids of
our future.

8.5 Conclusion

Summarizing, our paper offers some progress towards a systematic under-
standing of the long-term dynamics of regulatory networks (1.1) via an as-
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sociated di-graph Γ.

We have noticed the equivalence of the graph theoretic notions of informative
and feedback vertex sets with the notion of determining vertex sets in long-
term dynamics; see section 2 and theorem 1.3. In the autonomous case this
also leads to a faithful reconstruction of the global attractor by time-tracks
on any informative set; see theorem 1.6.

From an applications perspective, discussed in sections 7 and 8.4, we are
confident that the notion of informative sets is crucial

(i) to decide where to measure,

(ii) to aid modeling,

(iii) to check for data consistency,

(iv) to control dynamical properties,

in rather general regulatory networks.

The control aspect, together with the hierarchy of network dependencies at
the core of our Morse type decomposition of the di-graph Γ into cyclicity
components, opens a rational approach towards an understanding of hier-
archic modularity of regulatory networks. Indeed any cut of the di-graph
Γ into two pieces or “units”, where all vertices of the one precede those of
the other, along edge direction, offers the possibility to view the preceding
unit as controlling the dynamics of the other to an extent specified by the
respective feedback vertex sets of those units.

9 Appendix

9.1 Model equations for mammalian circadian rhythm

The mathematical model which we used in Section 7.3 is written as a system
of ODEs including 21 variables, Per1, Per2, Cry1, Cry2, Rev-erbα, Clk,
Bmal1, Rorc, PER1, PER2, CRY1, CRY2, REV-ERBα, CLK, BMAL1,
RORc, PER1/CRY1, PER2/CRY1, PER1/CRY2, PER2/CRY2 and CLK/BMAL1.
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dPer1
dt

= (V0,P er1 + V1,P er1
CLK/BMAL1na1,Per1

KAna1,Per1

1,P er1 + CLK/BMAL1na1,Per1
)

∗
KIni1,Per11,P er1

KIni1,Per11,P er1 + PER1/CRY1ni1,Per1
∗

KIni2,Per12,P er1

KIni2,Per12,P er1 + PER1/CRY2ni2,Per1

∗
KIni3,Per13,P er1

KIni3,Per13,P er1 + PER2/CRY1ni3,Per1
∗

KIni4,Per14,P er1

KIni4,Per14,P er1 + PER2/CRY2ni4,Per1

− km,Per1Per1

(9.1)

dPer2
dt

= (V0,P er2 + V1,P er2
CLK/BMAL1na1,Per2

KAna1,Per2

1,P er2 + CLK/BMAL1na1,Per2
)

∗
KIni1,Per21,P er2

KIni1,Per21,P er2 + PER1/CRY1ni1,Per2
∗

KIni2,Per22,P er2

KIni2,Per22,P er2 + PER1/CRY2ni2,Per2

∗
KIni3,Per23,P er2

KIni3,Per23,P er2 + PER2/CRY1ni3,Per2
∗

KIni4,Per24,P er2

KIni4,Per24,P er2 + PER2/CRY2ni4,Per2

− km,Per2Per2

(9.2)

dCry1
dt

= (V0,Cry1 + V1,Cry1
CLK/BMAL1na1,Cry1

KAna1,Cry1

1,Cry1 + CLK/BMAL1na1,Cry1
+

V2,Cry1
RORcna2,Cry1

KAna2,Cry1

2,Cry1 + RORcna2,Cry1
) ∗

KIni1,Cry11,Cry1

KIni1,Cry11,Cry1 + PER1/CRY1ni1,Cry1

∗
KIni2,Cry12,Cry1

KIni2,Cry12,Cry1 + PER1/CRY2ni2,Cry1
∗

KIni3,Cry13,Cry1

KIni3,Cry13,Cry1 + PER2/CRY1ni3,Cry1

∗
KIni4,Cry14,Cry1

KIni4,Cry14,Cry1 + PER2/CRY2ni4,Cry1
∗

KIni5,Cry15,Cry1

KIni5,Cry15,Cry1 + REV-ERBαni5,Cry1

− km,Cry1Cry1

(9.3)

55



dCry2
dt

= (V0,Cry2 + V1,Cry2
CLK/BMAL1na1,Cry2

KAna1,Cry2

1,Cry2 + CLK/BMAL1na1,Cry2
+

V2,Cry2
RORcna2,Cry2

KAna2,Cry2

2,Cry2 + RORcna2,Cry2
) ∗

KIni1,Cry21,Cry2

KIni1,Cry21,Cry2 + PER1/CRY1ni1,Cry2

∗
KIni2,Cry22,Cry2

KIni2,Cry22,Cry2 + PER1/CRY2ni2,Cry2
∗

KIni3,Cry23,Cry2

KIni3,Cry23,Cry2 + PER2/CRY1ni3,Cry2

∗
KIni4,Cry24,Cry2

KIni4,Cry24,Cry2 + PER2/CRY2ni4,Cry2
∗

KIni5,Cry25,Cry2

KIni5,Cry25,Cry2 + REV-ERBαni5,Cry2

− km,Cry2Cry2

(9.4)

dRev-erbα
dt

= V1,Rev-erbα
CLK/BMAL1na1,Rev-erbα

KAna1,Rev-erbα

1,Rev-erbα + CLK/BMAL1na1,Rev-erbα

∗
KIni1,Rev-erbα

1,Rev-erbα

KIni1,Rev-erbα

1,Rev-erbα + PER1/CRY1ni1,Rev-erbα

∗
KIni2,Rev-erbα

2,Rev-erbα

KIni2,Rev-erbα

2,Rev-erbα + PER1/CRY2ni2,Rev-erbα

∗
KIni3,Rev-erbα

3,Rev-erbα

KIni3,Rev-erbα

3,Rev-erbα + PER2/CRY1ni3,Rev-erbα

∗
KIni4,Rev-erbα

4,Rev-erbα

KIni4,Rev-erbα

4,Rev-erbα + PER2/CRY2ni4,Rev-erbα
− km,Rev-erbαRev-erbα

(9.5)

dClk

dt
= (V0,Clk + V1,Clk

RORcna1,Clk

KAna1,Clk

1,Clk + RORcna1,Clk
)

∗
KIni1,Clk1,Clk

KIni1,Clk1,Clk + REV-ERBαni1,Clk
− km,ClkClk

(9.6)
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dBmal1
dt

= (V0,Bmal1 + V1,Bmal1
RORcna1,Bmal1

KAna1,Bmal1

1,Bmal1 + RORcna1,Bmal1
)

∗
KIni1,Bmal11,Bmal1

KIni1,Bmal11,Bmal1 + REV-ERBαni1,Bmal1
− km,Bmal1Bmal1

(9.7)

dRorc

dt
= (V0,Rorc + V1,Rorc

CLK/BMAL1na1,Rorc

KAna1,Rorc

1,Rorc + CLK/BMAL1na1,Rorc

+ V2,Rorc
RORcna2,Rorc

KAna2,Rorc

2,Rorc + RORcna2,Rorc
)

∗
KIni1,Rorc1,Rorc

KIni1,Rorc1,Rorc + PER1/CRY1ni1,Rorc
∗

KIni2,Rorc2,Rorc

KIni2,Rorc2,Rorc + PER1/CRY2ni2,Rorc

∗
KIni3,Rorc3,Rorc

KIni3,Rorc3,Rorc + PER2/CRY1ni3,Rorc
∗

KIni4,Rorc4,Rorc

KIni4,Rorc4,Rorc + PER2/CRY2ni4,Rorc

∗
KIni5,Rorc5,Rorc

KIni5,Rorc5,Rorc + REV-ERBαni5,Rorc
− km,RorcRorc

(9.8)

dPER1
dt

= tPer1 ∗ Per1− aPER1,CRY1 ∗ PER1 ∗ CRY1

− aPER1,CRY2 ∗ PER1 ∗ CRY2 + dPER1/CRY1 ∗ PER1/CRY1

+ dPER1/CRY2 ∗ PER1/CRY2− kp,PER1 ∗ PER1

(9.9)

dPER2
dt

= tPer2 ∗ Per2− aPER2,CRY1 ∗ PER2 ∗ CRY1

− aPER2,CRY2 ∗ PER2 ∗ CRY2 + dPER2/CRY1 ∗ PER2/CRY1

+ dPER2/CRY2 ∗ PER2/CRY2− kp,PER2 ∗ PER2

(9.10)

dCRY1
dt

= tCry1 ∗ Cry1− aPER1,CRY1 ∗ PER1 ∗ CRY1

− aPER2,CRY1 ∗ PER2 ∗ CRY1 + dPER1/CRY1 ∗ PER1/CRY1

+ dPER2/CRY1 ∗ PER2/CRY1− kp,CRY1 ∗ CRY1

(9.11)
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dCRY2
dt

= tCry2 ∗ Cry2− aPER1,CRY2 ∗ PER1 ∗ CRY2

− aPER2,CRY2 ∗ PER2 ∗ CRY2 + dPER1/CRY2 ∗ PER1/CRY2

+ dPER2/CRY2 ∗ PER2/CRY2− kp,CRY2 ∗ CRY2

(9.12)

dREV-ERBα
dt

= tRev-erbα ∗ Rev-erbα− kp,REV-ERBα ∗ REV-ERBα(9.13)

dCLK
dt

= tClk ∗ Clk − aCLK,BMAL1 ∗ CLK ∗ BMAL1

+ dCLK/BMAL1 ∗ CLK/BMAL1− kp,CLK ∗ CLK
(9.14)

dBMAL1
dt

= tBmal1 ∗Bmal1− aCLK,BMAL1 ∗ CLK ∗ BMAL1

+ dCLK/BMAL1 ∗ CLK/BMAL1− kp,BMAL1 ∗ BMAL1
(9.15)

dRORc
dt

= tRorc ∗Rorc− kp,RORc ∗ RORc(9.16)

dPER1/CRY1
dt

= aPER1,CRY1 ∗ PER1 ∗ CRY1− dPER1/CRY1 ∗ PER1/CRY1

(9.17)

dPER2/CRY1
dt

= aPER2,CRY1 ∗ PER2 ∗ CRY1− dPER2/CRY1 ∗ PER2/CRY1

(9.18)

dPER1/CRY2
dt

= aPER1,CRY2 ∗ PER1 ∗ CRY2− dPER1/CRY2 ∗ PER1/CRY2

(9.19)

dPER2/CRY2
dt

= aPER2,CRY2 ∗ PER2 ∗ CRY2− dPER2/CRY2 ∗ PER2/CRY2

(9.20)

dCLK/BMAL1
dt

= aCLK,BMAL1 ∗ CLK ∗ BMAL1

− dCLK/BMAL1 ∗ CLK/BMAL1
(9.21)
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9.2 Parameters of numerical simulations

Our choice of parameter values are as follows:

V0,P er1=0.000001, V1,P er1=3.0, V0,P er2=0.09, V1,P er2=3.29, V0,Cry1=0.26,
V1,Cry1=2.44, V2,Cry1=2.89, V0,Cry2=1.29, V1,Cry2=2.72, V2,Cry2=0.1,
V1,Rev-erbα=11.06, V0,Clk=3.98, V1,Clk=3.36, V0,Bmal1=1.98, V1,Bmal1=4.12,
V0,Rorc=0.06, V1,Rorc=3.55, V2,Rorc=0.46,

na1,P er1=2.0, ni1,P er1=2.0, ni2,P er1=1.0, ni3,P er1=2.0, ni4,P er1=4.0,
na1,P er2=10.0, ni1,P er2=1.0, ni2,P er2=1.0, ni3,P er2=9.0, ni4,P er2=8.0,
na1,Cry1=4.91, na2,Cry1=3.01, ni1,Cry1=1.0, ni2,Cry1=1.0, ni3,Cry1=6.0,
ni4,Cry1=4.0, ni5,Cry1=2.24, na1,Cry2=4.39, na2,Cry2=4.43, ni1,Cry2=1.0,
ni2,Cry2=1.0, ni3,Cry2=4.0, ni4,Cry2=8.0, ni5,Cry2=1.75, na1,Rev-erbα=4.40, ni1,Rev-erbα=0.15,
ni2,Rev-erbα=0.3, ni3,Rev-erbα=7.0, ni4,Rev-erbα=7.0,
na1,Clk=3.50, ni1,Clk=1.96, na1,Bmal1=4.13, ni1,Bmal1=0.02, na1,Rorc=1.57,
na2,Rorc=0.56, ni1,Rorc=1.0, ni2,Rorc=1.0, ni3,Rorc=7.0, ni4,Rorc=7.0,
ni5,Rorc=4.33,

KA1,P er1=1.98, KI1,P er1=1.07, KI2,P er1=3.96, KI3,P er1=1.68, KI4,P er1=3.11,
KA1,P er2=1.90, KI1,P er2=4.51, KI2,P er2=2.98, KI3,P er2=2.24, KI4,P er2=3.31,
KA1,Cry1=1.46, KA2,Cry1=3.76, KI1,Cry1=0.03, KI2,Cry1=0.77, KI3,Cry1=3.59,
KI4,Cry1=3.44, KI5,Cry1=2.82, KA1,Cry2=0.69, KA2,Cry2=2.96, KI1,Cry2=4.63,
KI2,Cry2=2.95, KI3,Cry2=3.57, KI4,Cry2=2.75, KI5,Cry2=3.97, KA1,Rev-erbα=3.15,
KI1,Rev-erbα=3.56, KI2,Rev-erbα=3.62, KI3,Rev-erbα=4.71, KI4,Rev-erbα=1.23,
KA1,Clk=1.59, KI1,Clk=0.83, KA1,Bmal1=2.59, KI1,Bmal1=2.47, KA1,Rorc=4.30,
KA2,Rorc=4.89, KI1,Rorc=3.49, KI2,Rorc=2.34, KI3,Rorc=2.71, KI4,Rorc=2.09,
KI5,Rorc=3.36,

km,Per1=2.18, km,Per2=0.20, km,Cry1=0.22, km,Cry2=0.41, km,Rev-erbα=0.60,
km,Clk=3.19, km,Bmal1=1.42, km,Rorc=1.50, kp,PER1=2.58, kp,PER2=3.0,
kp,CRY1=0.312, kp,CRY2=5.9, kp,REV-ERBα=0.31, kp,CLK=1.52, kp,BMAL1=2.28,
kp,RORc=3.33,

tPer1=3.05, tPer2=2.38, tCry1=3.94, tCry2=1.69, tRev-erbα=1.60, tClk=3.04,
tBmal1=4.00, tRorc=1.39,

aPER1,CRY1=3.57, aPER1,CRY2=3.12, aPER2,CRY1=3.81, aPER2,CRY2=4.0,
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aCLK,BMAL1=1.98, dPER1/CRY1=1.32, dPER1/CRY2=1.85, dPER2/CRY1=1.37,
dPER2/CRY2=2.42, dCLK/BMAL1=0.97.

We calculated the dynamics of the model by Euler time steps ∆t = 0.001.
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